Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 1667–1678 | Cite as

Curcumin: a unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model

  • Hanaa H. Ahmed
  • Wafaa Gh. Shousha
  • Aziza B. Shalby
  • Hatem A. El-Mezayen
  • Nora N. Ismaiel
  • Nadia S. Mahmoud
Research Article

Abstract

This study was designed to investigate the role of curcumin against hepatocellular carcinoma (HCC) induced in rats. Forty rats were divided into five groups. Group (1) was negative control. Groups (2), (4), and (5) were orally administrated N-nitrosodiethylamine for HCC induction, then group (2) was left untreated, and group (4) was treated orally with curcumin, while group (5) was intraperitoneally injected with doxorubicin. Group (3) was served as curcumin control group. Serum alpha-fetoprotein, alpha l-fucosidase and vascular endothelial growth factor levels were analyzed. Gamma glutamyl transferase (GGT) and heat shock protein gp96 (HSPgp96) gene expressions were detected by RT-PCR. The immunohistochemical analysis of proliferating cell nuclear antigen (PCNA) and Ki-67 expressions was performed. Apoptosis was detected using DNA fragmentation assay. Also, histological investigation of liver tissue was achieved. Untreated HCC group showed significant elevation in the studied biochemical markers and significant upregulation in GGT and HSPgp96 gene expression as well as marked increase in PCNA and Ki-67 expression. Furthermore, this group revealed no DNA fragmentation. Histological investigation of liver tissue sections in HCC group revealed a typical anaplasia. On the other hand, the curcumin-treated group showed a significant depletion in the studied tumor markers and a significant downregulation in GGT and HSPgp96 gene expression. Also, this group displayed remarkable decrease in PCNA and Ki-67 expression. Moreover, this group revealed an obvious DNA fragmentation. Interestingly, treatment with curcumin showed remarkable improvement in the histological features of liver tissue. This study revealed the promising therapeutic role of curcumin against hepatocellular carcinoma owing to its antiangiogenic, antiproliferative, and apoptotic effects.

Keywords

Hepatocellular carcinoma Curcumin Angiogenesis Proliferation Apoptosis Rat 

Notes

Acknowledgments

The authors express sincere appreciation to Prof. Adel Bakeer kholoussy, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for his kind cooperation in conducting histological investigations in this study.

Conflicts of interest

None

References

  1. 1.
    Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, et al. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2012;9:530–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herbst DA, Reddy KR. Risk factors for hepatocellular carcinoma. Clin Liver Dis. 2012;1:180–2.CrossRefGoogle Scholar
  3. 3.
    Taha MME, Abdel Wahab SI, Othman F, Hanachi P, Abdul AB, Al-Zubairi AS. In vivo anti-tumor effects of Azadirachta indica in rat liver cancer. Res J Biol Sci. 2009;4:48–53.Google Scholar
  4. 4.
    Subbaraj GK, Kulanthaivel L, Rajendran R, Veerabathiran R. Ethanolic extract of Carum carvi (EECC) prevents N-nitrosodiethylamine induced phenobarbital promoted hepatocarcinogenesis by modulating antioxidant enzymes. Int J Pharm Pharm Sci. 2013;5:195–9.Google Scholar
  5. 5.
    El-Shemey WM, Desouky OS, Mohammed MS, Elsayed AA, El-Houseini ME. Characterization of cirrhosis and hepatocellular carcinoma using low-angle x-ray scattering signatures of serum. Phys Med Biol. 2003;48:239–46.CrossRefGoogle Scholar
  6. 6.
    Hussein MM, Ibrahim AA, Abdella HM, Montasser IF, Hassan MI. Evaluation of serum squamous cell carcinoma antigen as a novel biomarker for diagnosis of hepatocellular carcinoma in Egyptian patients. Indian J Cancer. 2008;45:167–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Montaser MF, Sakr MA, Khalifa M. Alpha-l-fucosidase as a tumor marker of hepatocellular carcinoma. Arab J Gastroenterol. 2012;13:9–13.CrossRefGoogle Scholar
  8. 8.
    Mas VR, Maluf DG, Archer KJ, Yanek KC, Fisher RA. Angiogenesis soluble factors as hepatocellular carcinoma noninvasive markers for monitoring hepatitis C virus cirrhotic patients awaiting liver transplantation. Transplantation. 2007;84:1262–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Motalleb G, Hanachi P, Fauziah O, Asmah R. Effect of Berberis vulgaris fruit extract on alpha-fetoprotein gene expression and chemical carcinogen metabolizing enzymes activities in hepatocarcinogenesis rats. Iran J Cancer Prev. 2008;1:33–44.Google Scholar
  10. 10.
    Zhou L, Liu J, Luo F. Serum tumor markers for detection of hepatocellular carcinoma. World J Gastroenterol. 2006;12:1175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schueller G, Kettenbach J, Sedivy R, Stift A, Friedl J, Gnant M, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol. 2004;24:609–13.PubMedGoogle Scholar
  12. 12.
    Lin GY, Chen ZL, Lu CM, Li Y, Ping XJ, Huang R. Immunohistochemical study on p53, H-rasp21, c-erbB-2 protein and PCNA expression in HCC tissues of Han and minority ethnic patients. World J Gastroenterol. 2000;6:234–8.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Youssef MI, Maghraby H, Youssef EA, El–Sayed MM. Expression of Ki-67 in hepatocellular carcinoma induced by diethylnitrosamine in mice and its correlation with histopathological alterations. J App Pharm Sci. 2012;2:52–9.Google Scholar
  14. 14.
    Stroescu C, Dragnea A, Ivanov B, Pechianu C, Herlea V, Sgarbura O, et al. Expression of p53, Bcl-2, VEGF, Ki67 and PCNA and prognostic significance in hepatocellular carcinoma. J Gastrointestin Liver Dis. 2008;17:411–7.PubMedGoogle Scholar
  15. 15.
    Qin L, Tang Z. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol. 2002;8:385–92.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li P, Li Y, Liu B, Wang W, Wang Y, Li Z. Curcumin inhibits MHCC97H liver cancer cells by activating ROS/TLR-4/caspase signaling pathway. Asian Pac J Cancer Prev. 2014;15:2329–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Steward WP, Brown K. Cancer chemoprevention: a rapidly evolving field. Br J Cancer. 2013;109:1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang X, Chen Q, Wang Y, Peng W, Cai H. Effects of curcumin on ion channels and transporters. Front Physiol. 2014;5:1–6.Google Scholar
  19. 19.
    Darwish HA, El-Boghdady NA. Possible involvement of oxidative stress in diethylnitrosamine induced hepatocarcinogenesis: chemopreventive effect of curcumin. J Food Biochem. 2011;37:353–61.CrossRefGoogle Scholar
  20. 20.
    Sreepriya M, Bali G. Chemopreventive effects of embelin and curcumin against N- nitrosodiethylamine/ phenobarbital-induced hepatocarcinogenesis in Wistar rats. Fitoterapia. 2005;76:549–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Barnes JM, Paget GE. Mechanisms of toxic action. Prog Med Chem. 1965;4:18–38.CrossRefPubMedGoogle Scholar
  22. 22.
    Carrasco-Legleu C, Sánchez-Pérez Y, Márquez-Rosado L, Fattel-Fazenda S, Arce-Popoca E, Hernández-García S, et al. A single dose of caffeic acid phenethyl ester prevents initiation in a medium-term rat hepatocarcinogenesis model. World J Gastroenterol. 2006;12:6779–85.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wu X, Yao D, Su X, Tai B, Huang H, Qiu L, et al. Dynamic expression of rat heat shock protein gp96 and its gene during development of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int. 2007;6:616–21.PubMedGoogle Scholar
  24. 24.
    Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Churchill Livingstone-Elsevier; 2008. p. 433–469.Google Scholar
  25. 25.
    Sambrook J, Fritsch EF, Maniatis T. Molecular cloning—a laboratory manual. 2nd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.Google Scholar
  26. 26.
    Song Y, Jin S, Cui L, Ji X, Yang F. Immunomodulatory effect of Stichopus japonicus acid mucopolysaccharide on experimental hepatocellular carcinoma in rats. Molecules. 2013;18:7179–93.CrossRefPubMedGoogle Scholar
  27. 27.
    Singhal A, Jayaraman M, Dhanasekaran DN, Kohli V. Molecular and serum markers in hepatocellular carcinoma: predictive tools for prognosis and recurrence. Crit Rev Oncol Hematol. 2012;82:116–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Sun B, Karin M. NF-κB signaling, liver disease and hepatoprotective agents. Oncogene. 2008;27:6228–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41:40–59.CrossRefPubMedGoogle Scholar
  30. 30.
    Cui W, Hu SX, Tang Z, Hu K. In vivo effects of cyclooxygenase-2 deletion on cellular signaling in hepatocellular carcinoma xenografts in nude mice. J Cancer Mol. 2007;3:49–54.Google Scholar
  31. 31.
    Chen B, Ning M, Yang G. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats. Molecules. 2012;17:4672–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Li C, Qian J, Lin J. Purification and characterization of α-l-fucosidase from human primary hepatocarcinoma tissue. World J Gastroenterol. 2006;12:3770–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    El-Shahat M, El-Abda S, Alkafafyb M, El-Khatiba G. Potential chemoprevention of diethylnitrosamine-induced hepatocarcinogenesis in rats: Myrrh (Commiphora molmol) vs. Turmeric (Curcuma longa). Acta Histochem. 2012;114:421–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Jozkowicz A, Cooke JP, Guevara I, Huk I, Funovics P, Pachinger O, et al. Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc Res. 2001;51:773–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura T, D’Acquisto F, et al. The hypoxia response element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: control of hypoxia-inducible factor-1 activity by nitric oxide. Blood. 2000;95:189–96.PubMedGoogle Scholar
  36. 36.
    Ikeda Y, Taniguchi N. Gene expression of gamma‐glutamyl transpeptidase. Methods Enzymol. 2005;401:408–25.CrossRefPubMedGoogle Scholar
  37. 37.
    Castellano I, Merlino A. Gamma-glutamyl transpeptidases: structure and function. Springer Briefs Biochem Mol Biol. 2013;13:1–57.CrossRefGoogle Scholar
  38. 38.
    Jayakumar S, Madankumar A, Asokkumar S, Raghunandhakumar S, Gokuladhas K, Kamaraj S, et al. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol Cell Biochem. 2012;360:51–60.CrossRefPubMedGoogle Scholar
  39. 39.
    Trivedi NP, Rawal UM. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Indian J Exp Biol. 2001;39:41–6.PubMedGoogle Scholar
  40. 40.
    Mahmoud EA, El-Bessoumy AA. Effect of curcumin on hematological, biochemical and antioxidant parameters in Schistosoma mansoni infected mice. Int J Sci. 2013;2:1–14.Google Scholar
  41. 41.
    Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S. Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analog alpha-diisoeugenol. Anticancer Res. 2005;25:4029–36.PubMedGoogle Scholar
  42. 42.
    Tian F, Fan T, Zhang Y, Jiang Y, Zhang X. Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through down-regulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin. 2012;44:847–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Chougala MB, Bhaskar JJ, Rajan MGR, Salimath PV. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin Nutr. 2012;30:1–7.Google Scholar
  44. 44.
    Chuang SE, Kuo ML, Hsu CH, Chen CR, Lin JK, Lai GM, et al. Curcumin containing diet inhibits the diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis. 2000;21:331–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Chintana P. Role of curcumin on tumor angiogenesis in hepatocellular carcinoma. Nares Univ J. 2008;16:239–54.Google Scholar
  46. 46.
    Shukla Y, Arora A. Suppression of altered hepatic foci development by curcumin in Wistar rats. Nutr Cancer. 2003;45:53–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J Trauma. 2001;51:927–31.CrossRefPubMedGoogle Scholar
  48. 48.
    Moustafa M, Morsi M, Hussein A, AL-Abd E, Abdel-Moneim N. Evaluation of tumor necrosis factor-α (TNF-α), soluble P-selectin (sP-Selectin), gamma-glutamyl transferase (GGT), glutathione S-transferase Pi (GST-Pi) and alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma before and during chemotherapy. Turk J Cancer. 2005;35:5–11.Google Scholar
  49. 49.
    Kusuzaki K, Shinjo H, Murata H, Takeshita H, Hashiguchi S, Nozaki T, et al. Relationship between doxorubicin binding ability and tumor volume decrease after chemotherapy in adult malignant soft tissue tumors in the extremities. Anticancer Res. 2000;20:3813–6.PubMedGoogle Scholar
  50. 50.
    Lee KA, Qiana DZ, Reya S, Wei H, Liud JO, et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. PNAS. 2008;106:2353–8.CrossRefGoogle Scholar
  51. 51.
    Jagan S, Ramakrishnan R, Anandakumar P, Kamaraj S, Devaki T. Antiproliferative potential of Gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem. 2008;319:51–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Paunesku T, Mittal S, Protic M, Oryhon J, Korolev SV, Joachimiak A, et al. Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol. 2001;77:1007–21.CrossRefPubMedGoogle Scholar
  53. 53.
    Chuang S, Cheng A, Lin J, Kuo M. Inhibition by curcumin of a diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol. 2000;38:991–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang M, Yang-Yen HF, Lin JK, Yen JJ. Differential regulation of p53, c-Myc, Bcl2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene. 1996;13:609–16.PubMedGoogle Scholar
  55. 55.
    Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-κB regulated gene products. Cancer Res. 2007;67:3853–61.CrossRefPubMedGoogle Scholar
  56. 56.
    Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, et al. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res. 2001;480–481:243–68.CrossRefPubMedGoogle Scholar
  57. 57.
    Czeczuga-Semeniuk E, Wołczyński S, Dabrowska M, Dziecioł J, Anchim T. The effect of doxorubicin and retinoids on proliferation, necrosis and apoptosis in MCF-7 breast cancer cells. Folia Histochem Cytobiol. 2004;42:221–7.PubMedGoogle Scholar
  58. 58.
    Wang X, Wang Q, Lin H, Gu Y, Xu Y. Significance of clinicopathology and expression of heat shock protein 72 and glycoprotein 96 in human hepatocellular carcinomas. Afr J Microbiol Res. 2011;5:5607–14.CrossRefGoogle Scholar
  59. 59.
    Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperon. 2005;10:86–103.CrossRefGoogle Scholar
  60. 60.
    Hooper PL, Hooper JJ. Vitamin E and atherosclerosis. Prev Cardiol. 2004;7:144.CrossRefPubMedGoogle Scholar
  61. 61.
    Saunders LR, Verdin E. Stress response and aging. Science. 2009;323:1021–2.CrossRefPubMedGoogle Scholar
  62. 62.
    Chun-Hong Q, Yong-Guo L, Jiang W, Hong-Jie HE. Curcumin reverses adriamycin-resistance of thermotolerant hepatocarcinoma cells by down-regulating p-glycoprotein and heat shock protein 70. Prog Biochem Biophys. 2012;39:151–60.CrossRefGoogle Scholar
  63. 63.
    Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27–37.CrossRefPubMedGoogle Scholar
  64. 64.
    Zanini C, Giribaldi G, Mandili G, Carta F, Crescenzio N, Bisaro B, et al. Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing’s sarcoma cell lines. J Neurochem. 2007;103:1344–54.CrossRefPubMedGoogle Scholar
  65. 65.
    Bhatia D, Thoppil RJ, Mandal A, Samtani KA, Darvesh AS, Bishayee A. Pomegranate bioactive constituents suppress cell proliferation and induce apoptosis in an experimental model of hepatocellular carcinoma: role of wnt/β-catenin signaling pathway. Evid Base Compl Alternative Med. 2013;2013:1–15.CrossRefGoogle Scholar
  66. 66.
    Mott JL, Gores GJ. Piercing the armor of hepatobiliary cancer: Bcl-2 homology domain3 (BH3) mimetics and cell death. Hepatology. 2007;46:906–11.CrossRefPubMedGoogle Scholar
  67. 67.
    Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl-XL in human hepatocellular carcinomas. Hepatology. 2001;34:55–61.CrossRefPubMedGoogle Scholar
  68. 68.
    Lorenzo HK, Susin SA. Mitochondrial effectors in caspase- independent cell death. FEBS Lett. 2004;557:14–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Park SS, Eom Y, Choi KS. Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe, but not in high dose doxorubicin-induced apoptosis. Biochem Biophys Res Commun. 2005;334:1014–21.CrossRefPubMedGoogle Scholar
  70. 70.
    Seufi A, Safinz S, Ibrahim S, Elmaghraby TK, Hafez EE. Preventive effect of the flavonoid, quercetin, on hepatic cancer in rats via oxidant/antioxidant activity: molecular and histological evidences. J Exp Clin Canc Res. 2009;28:80–6.CrossRefGoogle Scholar
  71. 71.
    Syng-Ai C, Kumari AL, Khar A. Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther. 2004;3:1101–8.PubMedGoogle Scholar
  72. 72.
    El-Sayyad H, Ismail MF, Shalaby FM, Abou-El-Magd RF, Gau RL, Fernando A, et al. Histopathological effects of cisplatin, doxorubicin and 5-fluorouracil (5-FU) on the liver of male albino rats. Int J Biol Sci. 2009;5:466–73.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Hanaa H. Ahmed
    • 1
  • Wafaa Gh. Shousha
    • 2
  • Aziza B. Shalby
    • 1
  • Hatem A. El-Mezayen
    • 2
  • Nora N. Ismaiel
    • 3
  • Nadia S. Mahmoud
    • 1
  1. 1.Hormones Department, Medical Research DivisionNational Research CentreGizaEgypt
  2. 2.Chemistry Department, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Molecular Genetics and Enzymology Department, Human Genetics and Genome ResearchesNational Research CentreGizaEgypt

Personalised recommendations