Tumor Biology

, Volume 36, Issue 3, pp 1603–1612 | Cite as

Expression of miRNAs in non-small-cell lung carcinomas and their association with clinicopathological features

  • Elham Tafsiri
  • Mojtaba Darbouy
  • Mohammad B. Shadmehr
  • Anna Zagryazhskaya
  • Javad Alizadeh
  • Morteza Karimipoor
Research Article


Lung cancer is recognized as a leading cause of cancer-related deaths worldwide. Over the past several years, evidence emerged that microRNAs (miRNAs), a class of small non-coding RNA molecules regulating gene expression at posttranscriptional level, play an important role in cell functioning, as well as in human diseases. Here, we analyzed expression of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 at transcriptional level in 30 non-small-cell lung carcinoma (NSCLC) tumor tissues compared to the matched adjacent normal tissues and their correlation with clinicopathological features of the patients. Samples were collected from the NSCLC patients undergoing surgery before radiotherapeutic or chemotherapeutic treatment. Expression levels of miRNAs were assessed by TaqMan RT-PCR assay. The data obtained in this study were processed using REST 2009 and SPSS statistical software. The graphs were designed by GraphPad prism 5.0. In tumor samples, we found downregulation of miR-15a/16 (50/83.3 %), miR-34a (83.3 %), miR-126 (70 %), and miR-128 (63.3 %). At the same time, miR-21 and miR-210 were upregulated by 53.3 and 66.6 % in cancer tissue versus matched adjacent normal tissues, respectively. No significant correlation was found between the expression levels of miR-15a/16, miR-21, miR-34a, miR-126, miR-128, and miR-210 and lymph node, tumor size, sex, and smoking. However, the study demonstrated a correlation between a change in expression of miR-15, miR-16, miR-34a, miR-126, and miR-210 compared to normal tissues and TNM staging (P < 0.05). Furthermore, miR-126 expression level was different in adenocarcinomas and squamous cell carcinoma (SCC) subtype (P < 0.1). Detailed analysis revealed significant change in expression of miR-15a/16, miR-34a, miR-126, and miR-210 in NSCLC tumor samples indicating involvement of these miRNAs in lung cancer pathogenesis. miR-210 demonstrated the most consistent increase in tumor tissues between different patients, suggesting its potential significance for NSCLC.


miR-15a/16 miR-21 miR-34 miR-210 miR-126 miR-128 NSCLC 



The work was supported by grants Pasteur Institute of Iran and NRITLD of Shahid Beheshti University of Medical Sciences, the Swedish and the Stockholm Cancer Societies.

Conflicts of interest



  1. 1.
    Hammerschmidt S, Wirtz H. Lung cancer: current diagnosis and treatment. Dtsch Arzteblatt Int. 2009;106(49):809–18. quiz 19–20.Google Scholar
  2. 2.
    Boeri M, Pastorino U, Sozzi G. Role of microRNAs in lung cancer: microRNA signatures in cancer prognosis. Cancer J. 2012;18(3):268–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2011;585(13):2087–99.CrossRefPubMedGoogle Scholar
  4. 4.
    Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38(3):323–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Jay C, Nemunaitis J, Chen P, Fulgham P, Tong AW. miRNA profiling for diagnosis and prognosis of human cancer. DNA Cell Biol. 2007;26(5):293–300.CrossRefPubMedGoogle Scholar
  6. 6.
    Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 2009;60:167–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Havens MA, Reich AA, Duelli DM, Hastings ML. Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res. 2012;40(10):4626–40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yeo JH, Chong MM. Many routes to a micro RNA. IUBMB Life. 2011;63(11):972–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Cho WC. MicroRNAs in cancer—from research to therapy. Biochim Biophys Acta. 2010;1805(2):209–17.PubMedGoogle Scholar
  10. 10.
    Du L, Pertsemlidis A. MicroRNAs and lung cancer: tumors and 22-mers. Cancer Metastasis Rev. 2010;29(1):109–22.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bhatt K, Zhou L, Mi QS, Huang S, She JX, Dong Z. MicroRNA-34a is induced via p53 during cisplatin nephrotoxicity and contributes to cell survival. Mol Med. 2010;16(9–10):409–16.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27(15):2128–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8(5):706–13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crawford M, Brawner E, Batte K, Yu L, Hunter MG, Otterson GA, et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem Biophys Res Commun. 2008;373(4):607–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang J, Du YY, Lin YF, Chen YT, Yang L, Wang HJ, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377(1):136–40.CrossRefPubMedGoogle Scholar
  22. 22.
    Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, et al. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008;19(6):1053–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, et al. MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med. 2009;87(1):43–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Evangelisti C, Florian MC, Massimi I, Dominici C, Giannini G, Galardi S, et al. MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness. FASEB J. 2009;23(12):4276–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Khan AP, Poisson LM, Bhat VB, Fermin D, Zhao R, Kalyana-Sundaram S, et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics. 2010;9(2):298–312.CrossRefPubMedGoogle Scholar
  26. 26.
    Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL-AF4 acute lymphocytic leukemia cells. Cell Cycle. 2010;9(6):1037–42.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis. 2013;4:e542.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, et al. hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res. 2008;14(5):1340–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, et al. miR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7(2):255–64.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8(17):2756–68.CrossRefPubMedGoogle Scholar
  32. 32.
    Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A microRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–67.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 2009;315(17):2941–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Barille-Nion S, Bah N, Vequaud E, Juin P. Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy. Anticancer Res. 2012;32(10):4225–33.PubMedGoogle Scholar
  39. 39.
    Michaud WA, Nichols AC, Mroz EA, Faquin WC, Clark JR, Begum S, et al. Bcl-2 blocks cisplatin-induced apoptosis and predicts poor outcome following chemoradiation treatment in advanced oropharyngeal squamous cell carcinoma. Clin Cancer Res. 2009;15(5):1645–54.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xue G, Yan HL, Zhang Y, Hao LQ, Zhu XT, Mei Q, et al. c-Myc-mediated repression of miR-15-16 in hypoxia is induced by increased HIF-2alpha and promotes tumor angiogenesis and metastasis by upregulating FGF2. Oncogene. 2014. doi: 10.1038/onc.2014.82.
  41. 41.
    Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, et al. Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;303(3):L199–207.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fei J, Lan F, Guo M, Li Y, Liu Y. Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. J Drug Target. 2008;16(9):688–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7(16):2591–600.CrossRefPubMedGoogle Scholar
  44. 44.
    Izzotti A, Calin GA, Arrigo P, Steele VE, Croce CM, De Flora S. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009;23(3):806–12.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sun T, Kong X, Du Y, Li Z. Aberrant microRNAs in pancreatic cancer: researches and clinical implications. Gastroenterol Res Pract. 2014;2014:386561.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, et al. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res. 2012;18(2):534–45.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen GQ, Zhao ZW, Zhou HY, Liu YJ, Yang HJ. Systematic analysis of microRNA involved in resistance of the MCF-7 human breast cancer cell to doxorubicin. Med Oncol. 2010;27:406–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, et al. Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun. 2008;377:114–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, et al. MicroRNA miR-34a inhibits human panceratic cancer tumor-initiating cells. PLoS One. 2009;4:e6816.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chardin P, Tavitian A. The ral gene: a new ras related gene isolated by the use of a synthetic probe. EMBO J. 1986;5(9):2203–8.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Li K, Li Z, Zhao N, Xu Y, Liu Y, Zhou Y, et al. Functional analysis of microRNA and transcription factor synergistic regulatory network based on identifying regulatory motifs in non-small cell lung cancer. BMC Syst Biol. 2013;7:122.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Donnem T, Lonvik K, Eklo K, Berg T, Sorbye SW, Al-Shibli K, et al. Independent and tissue-specific prognostic impact of miR-126 in nonsmall cell lung cancer: coexpression with vascular endothelial growth factor-A predicts poor survival. Cancer. 2011;117(14):3193–200.CrossRefPubMedGoogle Scholar
  53. 53.
    Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Feng R, Chen X, Yu Y, Su L, Yu B, Li J, et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010;298(1):50–63.CrossRefPubMedGoogle Scholar
  55. 55.
    Hansen TF, Sorensen FB, Lindebjerg J, Jakobsen A. The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC Cancer. 2012;12:83.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun X, Liu Z, Yang Z, Xiao L, Wang F, He Y, et al. Association of microRNA-126 expression with clinicopathological features and the risk of biochemical recurrence in prostate cancer patients undergoing radical prostatectomy. Diagn Pathol. 2013;8:208.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012;31(15):1884–95.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu Y, Zhang N, Wang Y, Xu M, Liu N, Pang X, et al. Zinc finger E-box binding homeobox 1 promotes invasion and bone metastasis of small cell lung cancer in vitro and in vivo. Cancer Sci. 2012;103(8):1420–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, et al. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol. 2012;19 Suppl 3:S656–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Venkataraman S, Alimova I, Fan R, Harris P, Foreman N, Vibhakar R. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One. 2010;5(6):e10748.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Adlakha YK, Saini N. MicroRNA-128 downregulates Bax and induces apoptosis in human embryonic kidney cells. Cell Mol Life Sci. 2011;68(8):1415–28.CrossRefPubMedGoogle Scholar
  62. 62.
    Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol. 2011;8(1):125–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett. 2009;583(20):3349–55.CrossRefPubMedGoogle Scholar
  64. 64.
    Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18(3):465–78.CrossRefPubMedGoogle Scholar
  65. 65.
    Grosso S, Doyen J, Parks SK, Bertero T, Paye A, Cardinaud B, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4:e544.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, et al. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol. 2014;45(8):1555–62.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Elham Tafsiri
    • 1
    • 2
  • Mojtaba Darbouy
    • 1
  • Mohammad B. Shadmehr
    • 3
  • Anna Zagryazhskaya
    • 4
  • Javad Alizadeh
    • 1
  • Morteza Karimipoor
    • 2
  1. 1.Department of Molecular Genetics, Science and Research BranchIslamic Azad UniversityFarsIran
  2. 2.Department of Molecular Medicine, Biotechnology Research CenterPasteur Institute of IranTehranIran
  3. 3.Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD)Shahid Beheshti University of Medical SciencesTehranIran
  4. 4.Institute of Environmental Medicine, Division of ToxicologyKarolinska InstitutetStockholmSweden

Personalised recommendations