Tumor Biology

, Volume 36, Issue 2, pp 1221–1231 | Cite as

Identification of prohibitin 1 as a potential prognostic biomarker in human pancreatic carcinoma using modified aqueous two-phase partition system combined with 2D-MALDI-TOF-TOF-MS/MS

  • Ning Zhong
  • Yazhou Cui
  • Xiaoyan Zhou
  • Tianliang Li
  • Jinxiang Han
Research Article


Membrane proteins are an important source of potential targets for anticancer drugs or biomarkers for early diagnosis. In this study, we used a modified aqueous two-phase partition system combined with two-dimensional (2D) matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS, 2D-MALDI-TOF-TOF-MS/MS) analysis to isolate and identify membrane proteins in PANC-1 pancreatic cancer cells. Using this method, we identified 55 proteins, of which 31 (56.4 %) were membrane proteins, which, according to gene ontology annotation, are associated with various cellular processes including cell signal transduction, differentiation, and apoptosis. Immunohistochemical analysis showed that the expression level of one of the identified mitochondria membrane proteins, prohibitin 1 (PHB1), is correlated with pancreatic carcinoma differentiation; PHB1 is expressed at a higher level in normal pancreatic tissue than in well-differentiated carcinoma tissue. Further studies showed that PHB1 plays a proapoptotic role in human pancreatic cancer cells, which suggests that PHB1 has antitumorigenic properties. In conclusion, we have provided a modified method for isolating and identifying membrane proteins and demonstrated that PHB1 may be a promising biomarker for early diagnosis and therapy of pancreatic (and potentially other) cancers.


Pancreatic carcinoma Prohibitin 1 Tumor biomarker Membrane proteome Apoptosis 



This study was supported by grants from the Technologies R&D Program of Shandong Province, China (2005GG1102003) and the National High Technology Research and Development Program of China (2007AA021004).

Conflicts of interest



  1. 1.
    Grantzdorffer I, Carl-McGrath S, Ebert MP, Rocken C. Proteomics of pancreatic cancer. Pancreas. 2008;36(4):329–36. doi: 10.1097/MPA.0b013e31815cc452.CrossRefPubMedGoogle Scholar
  2. 2.
    Zagouri F, Sergentanis TN, Chrysikos D, Zografos CG, Papadimitriou CA, Dimopoulos MA, et al. Molecularly targeted therapies in metastatic pancreatic cancer: a systematic review. Pancreas. 2013;42(5):760–73. doi: 10.1097/MPA.0b013e31827aedef.CrossRefPubMedGoogle Scholar
  3. 3.
    Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene. 2007;26(22):3279–90. doi: 10.1038/sj.onc.1210421.CrossRefPubMedGoogle Scholar
  4. 4.
    Lallet-Daher H, Roudbaraki M, Bavencoffe A, Mariot P, Gackiere F, Bidaux G, et al. Intermediate-conductance Ca2+-activated K+ channels (IKCa1) regulate human prostate cancer cell proliferation through a close control of calcium entry. Oncogene. 2009;28(15):1792–806. doi: 10.1038/onc.2009.25.CrossRefPubMedGoogle Scholar
  5. 5.
    Wallin E, von Heijne G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998;7(4):1029–38. doi: 10.1002/pro.5560070420.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rabilloud T. Membrane proteins ride shotgun. Nat Biotechnol. 2003;21(5):508–10. doi: 10.1038/nbt0503-508.CrossRefPubMedGoogle Scholar
  7. 7.
    Schindler J, Lewandrowski U, Sickmann A, Friauf E. Aqueous polymer two-phase systems for the proteomic analysis of plasma membranes from minute brain samples. J Proteome Res. 2008;7(1):432–42. doi: 10.1021/pr0704736.CrossRefPubMedGoogle Scholar
  8. 8.
    Morre DM, Morre DJ. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells. J Chromatogr B Biomed Sci Appl. 2000;743(1–2):377–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Qi T, Han J, Cui Y, Zong M, Liu X, Zhu B. Comparative proteomic analysis for the detection of biomarkers in pancreatic ductal adenocarcinomas. J Clin Pathol. 2008;61(1):49–58. doi: 10.1136/jcp.2006.044735.CrossRefPubMedGoogle Scholar
  10. 10.
    Liu X, Yue P, Zhou Z, Khuri FR, Sun SY. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst. 2004;96(23):1769–80. doi: 10.1093/jnci/djh322.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhou P, Qian L, D’Aurelio M, Cho S, Wang G, Manfredi G, et al. Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. J Neurosci. 2012;32(2):583–92. doi: 10.1523/JNEUROSCI. 2849-11.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mujahid S, Pechan T, Wang C. Improved solubilization of surface proteins from Listeria monocytogenes for 2-DE. Electrophoresis. 2007;28(21):3998–4007. doi: 10.1002/elps.200600858.CrossRefPubMedGoogle Scholar
  13. 13.
    Nuell MJ, Stewart DA, Walker L, Friedman V, Wood CM, Owens GA, et al. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells. Mol Cell Biol. 1991;11:1372–81.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Terashima M, Kim KM, Adachi T, Nielsen PJ, Reth M, Kohler G, et al. The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J. 1994;13:3782–92.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW, et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 2000;19:2444–51.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem. 2003;278:47853–61.CrossRefPubMedGoogle Scholar
  17. 17.
    Berger KH, Yaffe MP. Prohibitin family members interact genetically with mitochondrial inheritance components in Saccharomyces cerevisiae. Mol Cell Biol. 1998;18(7):4043–52.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Coates PJ, Jamieson DJ, Smart K, Prescott AR, Hall PA. The prohibitin family of mitochondrial proteins regulate replicative lifespan. Curr Biol. 1997;7(8):607–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Coates PJ, Nenutil R, McGregor A, Picksley SM, Crouch DH, Hall PA, et al. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp Cell Res. 2001;265(2):262–73. doi: 10.1006/excr.2001.5166.CrossRefPubMedGoogle Scholar
  20. 20.
    Dell’Orco RT, McClung JK, Jupe ER, Liu XT. Prohibitin and the senescent phenotype. Exp Gerontol. 1996;31(1–2):245–52.CrossRefPubMedGoogle Scholar
  21. 21.
    Rizwani W, Alexandrow M, Chellappan S. Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle. 2009;8(10):1621–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tsai HW, Chow NH, Lin CP, Chan SH, Chou CY, Ho CL. The significance of prohibitin and c-Met/hepatocyte growth factor receptor in the progression of cervical adenocarcinoma. Hum Pathol. 2006;37(2):198–204. doi: 10.1016/j.humpath.2005.10.012.CrossRefPubMedGoogle Scholar
  23. 23.
    Ren HZ, Wang JS, Wang P, Pan GQ, Wen JF, Fu H, et al. Increased expression of prohibitin and its relationship with poor prognosis in esophageal squamous cell carcinoma. Pathol Oncol Res. 2010;16(4):515–22. doi: 10.1007/s12253-009-9242-1.CrossRefPubMedGoogle Scholar
  24. 24.
    Ryu JW, Kim HJ, Lee YS, Myong NH, Hwang CH, Lee GS, et al. The proteomics approach to find biomarkers in gastric cancer. J Korean Med Sci. 2003;18(4):505–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kang X, Zhang L, Sun J, Ni Z, Ma Y, Chen X, et al. Prohibitin: a potential biomarker for tissue-based detection of gastric cancer. J Gastroenterol. 2008;43(8):618–25. doi: 10.1007/s00535-008-2208-3.CrossRefPubMedGoogle Scholar
  26. 26.
    Nan Y, Yang S, Tian Y, Zhang W, Zhou B, Bu L, et al. Analysis of the expression protein profiles of lung squamous carcinoma cell using shot-gun proteomics strategy. Med Oncol. 2009;26(2):215–21. doi: 10.1007/s12032-008-9109-4.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu TF, Wu H, Wang YW, Chang TY, Chan SH, Lin YP, et al. Prohibitin in the pathogenesis of transitional cell bladder cancer. Anticancer Res. 2007;27(2):895–900.PubMedGoogle Scholar
  28. 28.
    Gregory-Bass RC, Olatinwo M, Xu W, Matthews R, Stiles JK, Thomas K, et al. Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer. 2008;122(9):1923–30. doi: 10.1002/ijc.23351.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ummanni R, Junker H, Zimmermann U, Venz S, Teller S, Giebel J, et al. Prohibitin identified by proteomic analysis of prostate biopsies distinguishes hyperplasia and cancer. Cancer Lett. 2008;266(2):171–85. doi: 10.1016/j.canlet.2008.02.047.CrossRefPubMedGoogle Scholar
  30. 30.
    Chumbalkar VC, Subhashini C, Dhople VM, Sundaram CS, Jagannadham MV, Kumar KN, et al. Differential protein expression in human gliomas and molecular insights. Proteomics. 2005;5(4):1167–77. doi: 10.1002/pmic.200401202.CrossRefPubMedGoogle Scholar
  31. 31.
    Theiss AL, Sitaraman SV. The role and therapeutic potential of prohibitin in disease. Biochim Biophys Acta. 2011;1813(6):1137–43. doi: 10.1016/j.bbamcr.2011.01.033.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou TB, Qin YH. Signaling pathways of prohibitin and its role in diseases. J Recept Signal Transduct Res. 2013;33(1):28–36. doi: 10.3109/10799893.2012.752006.CrossRefPubMedGoogle Scholar
  33. 33.
    Thuaud F, Ribeiro N, Nebigil CG, Desaubry L. Prohibitin ligands in cell death and survival: mode of action and therapeutic potential. Chem Biol. 2013;20(3):316–31. doi: 10.1016/j.chembiol.2013.02.006.CrossRefPubMedGoogle Scholar
  34. 34.
    Dart DA, Spencer-Dene B, Gamble SC, Waxman J, Bevan CL. Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocr Relat Cancer. 2009;16(4):1157–69. doi: 10.1677/ERC-09-0028.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ko KS, Tomasi ML, Iglesias-Ara A, French BA, French SW, Ramani K, et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology. 2010;52(6):2096–108. doi: 10.1002/hep.23919.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu T, Tang H, Lang Y, Liu M, Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273(2):233–42. doi: 10.1016/j.canlet.2008.08.003.CrossRefPubMedGoogle Scholar
  37. 37.
    Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR, et al. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci U S A. 2010;107(6):2503–8. doi: 10.1073/pnas.0910649107.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang L, Ji Q, Ni ZH, Sun J. Prohibitin induces apoptosis in BGC823 gastric cancer cells through the mitochondrial pathway. Asian Pac J Cancer Prev APJCP. 2012;13:3803–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Sato S, Murata A, Orihara T, Shirakawa T, Suenaga K, Kigoshi H, et al. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem Biol. 2011;18:131–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu Y-H, Peck K, Lin J-Y (2012) Involvement of prohibitin upregulation in abrin-triggered apoptosis. Evid base Compl Alternative Med 2012:605154Google Scholar
  41. 41.
    Savulescu D, Feng J, Ping YS, Mai O, Boehm U, He B, et al. Gonadotropin-releasing hormone-regulated prohibitin mediates apoptosis of the gonadotrope cells. Mol Endocrinol. 2013;27:1856–70.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Ning Zhong
    • 1
  • Yazhou Cui
    • 2
  • Xiaoyan Zhou
    • 2
  • Tianliang Li
    • 2
  • Jinxiang Han
    • 1
    • 2
  1. 1.School of MedicineShandong UniversityJinanChina
  2. 2.Key Laboratory of Ministry of Health for Biotech-Drug, Shandong Medicinal Biotechnology CenterShandong Academy of Medical SciencesJinanChina

Personalised recommendations