Skip to main content

Advertisement

Log in

Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism

  • Research Article
  • Published:
Tumor Biology

Abstract

The receptor for CCL22 is named CCR4 that preferentially is expressed on the regulatory T cells (Treg), and accordingly, CCL22 acts as a chemoattractant for the intratumoral Treg migration. The aim of this study was to evaluate the serum CCL22 levels and a single nucleotide polymorphism (SNP) in chemokine gene, [2030 G/C (rs223818)], in patients with breast cancer. Blood samples were collected from 100 women with breast cancer before receiving chemotherapy, radiotherapy, or immunotherapy and 100 age-matched healthy women as a control group. The serum CCL22 levels were measured by ELISA. The DNA extracted and the SNP rs223818 determined by amplification refractory mutation system–polymerase chain reaction (ARMS–PCR) technique. The mean serum CCL22 levels in patients with breast cancer (2398.5 ± 123 Pg/mL) was significantly higher in comparison to healthy control group (974.2 ± 39.9 Pg/mL; P < 0.001). According to the tumor stages, the mean serum levels of CCL22 were 999.8 ± 85.0 Pg/mL in stage I, 1718.8 ± 82.3 Pg/mL in stage II, 2846.8 ± 118.0 Pg/mL in stage III, and 3954.5 ± 245.2 Pg/mL in stage IV. There was significant difference between tumor stages regarding the serum CCL22 levels (P < 0.001). In patients with breast cancer, the frequencies of CC genotype (63 %) and C allele (79 %) at rs223818 were significantly higher as compared to healthy controls (31 and 52 %, respectively; P < 0.001). In both patients and control groups, the mean serum levels of CCL22 in subjects with CC genotype or C allele at rs223818 were also significantly higher as compared to subjects with GG genotype or G allele (P < 0.001). Higher serum CCL22 levels were observed in patients with breast cancer that is increased with advanced stages. These findings represent that the CCL22 may contribute in tumor development. The CC genotype and C allele at rs223818 were more frequent in breast cancer patients. The serum CCL22 levels were affected by genetic variations at SNP rs223818. Accordingly, SNP rs223818 may play a role in the susceptibility to breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nelson HD, Zakher B, Cantor A, Fu R, Griffin J, O’Meara ES, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 2012;156:635–48.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  3. Park NJ, Kang DH. Breast cancer risk and immune responses in healthy women. Oncol Nurs Forum. 2006;33:1151–9.

    Article  PubMed  Google Scholar 

  4. Kees T, Egeblad M. Innate immune cells in breast cancer—from villains to heroes? J Mammary Gland Biol Neoplasia. 2011;16:189–203.

    Article  PubMed  Google Scholar 

  5. Gruber I, Landenberger N, Staebler A, Hahn M, Wallwiener D, Fehm T. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res. 2013;33:2233–8.

    CAS  PubMed  Google Scholar 

  6. Zhu J, Paul WE. Heterogeneity and plasticity of T helper cells. Cell Res. 2010;20:4–12.

    Article  PubMed  Google Scholar 

  7. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett. 2014;158:57–65.

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 2008;222:129–44.

    Article  CAS  PubMed  Google Scholar 

  9. Lee HJ, Song IC, Yun HJ, Jo DY, Kim S. CXC chemokines and chemokine receptors in gastric cancer: from basic findings towards therapeutic targeting. World J Gastroenterol. 2014;20:1681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li J-Y, Ou Z-L, Yu S-J, Gu X-L, Yang C, Chen A-X, et al. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res Treat. 2012;131:837–48.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Q, Han X, Peng J, Qin H, Wang Y. The role of CXC chemokines and their receptors in the progression and treatment of tumors. J Mol Histol. 2012;43:699–713.

    Article  CAS  PubMed  Google Scholar 

  12. Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett. 2008;267:226–44.

    Article  CAS  PubMed  Google Scholar 

  13. Viola A, Sarukhan A, Bronte V, Molon B. The pros and cons of chemokines in tumor immunology. Trends Immunol. 2012;33:496–504.

    Article  CAS  PubMed  Google Scholar 

  14. Franciszkiewicz K, Boissonnas A, Boutet M, Combadiere C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 2012;72:6325–32.

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita U, Kuroda E. Regulation of macrophage-derived chemokine (MDC, CCL22) production. Crit Rev Immunol. 2002;22:105–14.

    Article  CAS  PubMed  Google Scholar 

  16. Wang G, Yu D, Tan W, Zhao D, Wu C, Lin D. Genetic polymorphism in chemokine CCL22 and susceptibility to Helicobacter pylori infection‐related gastric carcinoma. Cancer. 2009;115:2430–7.

    Article  CAS  PubMed  Google Scholar 

  17. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    CAS  PubMed  Google Scholar 

  18. Wagsater D, Dienus O, Lofgren S, Hugander A, Dimberg J. Quantification of the chemokines CCL17 and CCL22 in human colorectal adenocarcinomas. Mol Med Rep. 2008;1:211–7.

    PubMed  Google Scholar 

  19. Nakanishi T, Imaizumi K, Hasegawa Y, Kawabe T, Hashimoto N, Okamoto M, et al. Expression of macrophage-derived chemokine (MDC)/CCL22 in human lung cancer. Cancer Immunol Immunother. 2006;55:1320–9.

    Article  CAS  PubMed  Google Scholar 

  20. Li YQ, Liu FF, Zhang XM, Guo XJ, Ren MJ, Fu L. Tumor secretion of CCL22 activates intratumoral Treg infiltration and is independent prognostic predictor of breast cancer. PLoS One. 2013;8:e76379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niens M, Visser L, Nolte IM, Van Der Steege G, Diepstra A, Cordano P, et al. Serum chemokine levels in Hodgkin lymphoma patients: highly increased levels of CCL17 and CCL22. Br J Haematol. 2008;140:527–36.

    Article  CAS  PubMed  Google Scholar 

  22. Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, et al. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer. 2013;132:2755–66.

    Article  CAS  PubMed  Google Scholar 

  23. Sugimoto M, Yamaoka Y, Furuta T. Influence of interleukin polymorphisms on development of gastric cancer and peptic ulcer. World J Gastroenterol. 2010;16:1188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. You Y, Deng J, Zheng J, Hu M, Li N, Wu H, et al. IL-21 gene polymorphism is associated with the prognosis of breast cancer in Chinese populations. Breast Cancer Res Treat. 2013;137:893–901.

    Article  CAS  PubMed  Google Scholar 

  25. Back LK, Farias TD, da Cunha PA, Muniz YC, Ribeiro MC, Fernandes BL, et al. Functional polymorphisms of interleukin-18 gene and risk of breast cancer in a Brazilian population. Tissue Antigens. 2014;2014:12367.

    Google Scholar 

  26. Karakus N, Kara N, Ulusoy AN, Ozaslan C, Bek Y. Tumor necrosis factor alpha and beta and interferon gamma gene polymorphisms in Turkish breast cancer patients. DNA Cell Biol. 2011;30:371–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ma XY, Jin Y, Sun HM, Yu L, Bai J, Chen F, et al. CXCL12 G801A polymorphism contributes to cancer susceptibility: a meta-analysis. Cell Mol Biol (Noisy-le-grand). 2012;58(Suppl):OL1702–1708.

    CAS  Google Scholar 

  28. Guergnon J, Combadiere C. Role of chemokines polymorphisms in diseases. Immunol Lett. 2012;145:15–22.

    Article  CAS  PubMed  Google Scholar 

  29. Tahmasebi Z, Akbarian M, Mirkazemi S, Shahlaee A, Alizadeh Z, Amirzargar AA, et al. Interleukin-1 gene cluster and IL-1 receptor polymorphisms in Iranian patients with systemic lupus erythematosus. Rheumatol Int. 2013;33:2591–6.

    Article  CAS  PubMed  Google Scholar 

  30. Wang G, Yu D, Tan W, Zhao D, Wu C, Lin D. Genetic polymorphism in chemokine CCL22 and susceptibility to Helicobacter pylori infection-related gastric carcinoma. Cancer. 2009;115:2430–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hirota T, Saeki H, Tomita K, Tanaka S, Ebe K, Sakashita M, et al. Variants of CC motif chemokine 22 (CCL22) are associated with susceptibility to atopic dermatitis: case–control studies. PLoS One. 2011;6.

  32. Greene F, Page D, Fleming I, Fritz A, Balch C, Haller D, et al. R C: AJCC cancer staging man. NY: Springer; 2002.

    Book  Google Scholar 

  33. Miller S, Dykes D, Polesky H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perrey C, Turner SJ, Pravica V, Howell WM, Hutchinson IV. ARMS-PCR methodologies to determine IL-10, TNF-α, TNF-β and TGF-β1 gene polymorphisms. Transpl Immunol. 1999;7:127–8.

    Article  CAS  PubMed  Google Scholar 

  35. Hallett MA, Venmar KT, Fingleton B. Cytokine stimulation of epithelial cancer cells: the similar and divergent functions of IL-4 and IL-13. Cancer Res. 2012;72:6338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimauchi T, Imai S, Hino R, Tokura Y. Production of thymus and activation-regulated chemokine and macrophage-derived chemokine by CCR4+ adult T-cell leukemia cells. Clin Cancer Res. 2005;11:2427–35.

    Article  CAS  PubMed  Google Scholar 

  37. Takegawa S, Jin Z, Nakayama T, Oyama T, Hieshima K, Nagakubo D, et al. Expression of CCL17 and CCL22 by latent membrane protein 1-positive tumor cells in age-related Epstein–Barr virus-associated B-cell lymphoproliferative disorder. Cancer Sci. 2008;99:296–302.

    Article  CAS  PubMed  Google Scholar 

  38. Faget J, Biota C, Bachelot T, Gobert M, Treilleux I, Goutagny N, et al. Early detection of tumor cells by innate immune cells leads to Treg recruitment through CCL22 production by tumor cells. Cancer Res. 2011;71:6143–52.

    Article  CAS  PubMed  Google Scholar 

  39. Menetrier-Caux C, Faget J, Biota C, Gobert M, Blay JY, Caux C. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment. Oncoimmunology. 2012;1:759–61.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mailloux AW, Young MR. NK-dependent increases in CCL22 secretion selectively recruits regulatory T cells to the tumor microenvironment. J Immunol. 2009;182:2753–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fialova A, Partlova S, Sojka L, Hromadkova H, Brtnicky T, Fucikova J, et al. Dynamics of T-cell infiltration during the course of ovarian cancer: the gradual shift from a Th17 effector cell response to a predominant infiltration by regulatory T-cells. Int J Cancer. 2013;132:1070–9.

    Article  CAS  PubMed  Google Scholar 

  42. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, et al. CD4 + CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006;177:7398–405.

    Article  CAS  PubMed  Google Scholar 

  43. Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 2008;122:2286–93.

    Article  CAS  PubMed  Google Scholar 

  44. Maruyama T, Kono K, Izawa S, Mizukami Y, Kawaguchi Y, Mimura K, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to infiltration of regulatory T cells in esophageal squamous cell carcinoma. Dis Esophagus. 2010;23:422–9.

    CAS  PubMed  Google Scholar 

  45. Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43:1518–28.

    Article  CAS  PubMed  Google Scholar 

  46. Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother. 2013;63:67–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beaty SR, Rose Jr CE, Sung SS. Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J Immunol. 2007;178:1882–95.

    Article  CAS  PubMed  Google Scholar 

  48. Wang ZK, Yang B, Liu H, Hu Y, Yang JL, Wu LL, et al. Regulatory T cells increase in breast cancer and in stage IV breast cancer. Cancer Immunol Immunother. 2012;61:911–6.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao Y, Wu K, Cai K, Zhai R, Tao K, Wang G, et al. Increased numbers of gastric-infiltrating mast cells and regulatory T cells are associated with tumor stage in gastric adenocarcinoma patients. Oncol Lett. 2012;4:755–8.

    PubMed  PubMed Central  Google Scholar 

  50. Bacic D, Uravic M, Bacic R, Sutic I, Petrosic N. Augmentation of regulatory T cells (CD4 + CD25 + Foxp3+) correlates with tumor stage in patients with colorectal cancer. Coll Antropol. 2011;35 Suppl 2:65–8.

    PubMed  Google Scholar 

  51. Antonelli A, Ferrari SM, Giuggioli D, Ferrannini E, Ferri C, Fallahi P. Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev. 2014;13:272–80.

    Article  CAS  PubMed  Google Scholar 

  52. Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, et al. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011;22:121–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mulligan AM, Raitman I, Feeley L, Pinnaduwage D, Nguyen LT, O’Malley FP, et al. Tumoral lymphocytic infiltration and expression of the chemokine CXCL10 in breast cancers from the Ontario familial breast cancer registry. Clin Cancer Res. 2013;19:336–46.

    Article  CAS  PubMed  Google Scholar 

  54. Haabeth OA, Lorvik KB, Hammarstrom C, Donaldson IM, Haraldsen G, Bogen B, et al. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun. 2011;2:240.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li G, Tian L, Hou JM, Ding ZY, He QM, Feng P, et al. Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with cisplatin in solid tumors. Clin Cancer Res. 2005;11:4217–24.

    Article  CAS  PubMed  Google Scholar 

  56. Chew V, Chen J, Lee D, Loh E, Lee J, Lim KH, et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut. 2012;61:427–38.

    Article  CAS  PubMed  Google Scholar 

  57. Mlecnik B, Tosolini M, Charoentong P, Kirilovsky A, Bindea G, Berger A, et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology. 2010;138:1429–40.

    Article  CAS  PubMed  Google Scholar 

  58. Cooper DN. Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genom. 2010;4:284–8.

    Article  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jafarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarzadeh, A., Fooladseresht, H., Minaee, K. et al. Higher circulating levels of chemokine CCL22 in patients with breast cancer: evaluation of the influences of tumor stage and chemokine gene polymorphism. Tumor Biol. 36, 1163–1171 (2015). https://doi.org/10.1007/s13277-014-2739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2739-6

Keywords

Navigation