Tumor Biology

, Volume 36, Issue 2, pp 1067–1072 | Cite as

The SNAI1 3′UTR functions as a sponge for multiple migration-/invasion-related microRNAs

Research Article

Abstract

Accumulating evidence has indicated a large-scale regulatory network generated by 3′untranslated regions (3′UTRs) in cancer. The 3′UTRs act not only in cis but, most likely even more importantly, as trans regulators of gene expression, consequently leading to phenotypic alterations. Here, we found that ectopic expression of SNAI1 3′UTR induced migration and invasion of ovarian cancer cell line RMUG-L without significantly affecting cell viability. Additionally, SNAI1 3′UTR overexpression regulated key epithelial-to-mesenchymal transition (EMT) markers, including SNAI1, Vimentin, and E-cadherin, and functioned as a sponge for multiple migration-/invasion-related microRNAs (miRNAs) in RMUG-L cells. These findings revealed the noncoding function of SNAI1 for the first time.

Keywords

Ovarian cancer SNAI1 3′UTR Epithelial-to-mesenchymal transition MicroRNA Competing endogenous RNA 

Notes

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (No.81172456), the Natural Science Foundation of Shanghai (No.124119a5502), and the Ministry of Education of the People’s Republic of China for Creative Ph.D. Students (No.JFF157001).

Conflicts of interest

None

Supplementary material

13277_2014_2733_MOESM1_ESM.doc (46 kb)
ESM 1 (DOC 46 kb)

References

  1. 1.
    De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.CrossRefPubMedGoogle Scholar
  2. 2.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, Del BM, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2:84–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004;24:306–19.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blechschmidt K, Sassen S, Schmalfeldt B, Schuster T, Hofler H, Becker KF. The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients. Br J Cancer. 2008;98:489–95.CrossRefPubMedGoogle Scholar
  6. 6.
    Yuan H, Kajiyama H, Ito S, Yoshikawa N, Hyodo T, Asano E, et al. ALX1 induces snail expression to promote epithelial-to-mesenchymal transition and invasion of ovarian cancer cells. Cancer Res. 2013;73:1581–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Come C, Magnino F, Bibeau F, De Santa BP, Becker KF, Theillet C, et al. Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res. 2006;12:5395–402.CrossRefPubMedGoogle Scholar
  8. 8.
    Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, et al. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS ONE. 2012;7:e35440.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pena C, Garcia JM, Larriba MJ, Barderas R, Gomez I, Herrera M, et al. SNAI1 expression in colon cancer related with CDH1 and VDR downregulation in normal adjacent tissue. Oncogene. 2009;28:4375–85.CrossRefPubMedGoogle Scholar
  10. 10.
    Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol. 2004;24:7559–66.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development. 2005;132:3151–61.CrossRefPubMedGoogle Scholar
  12. 12.
    Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131–43.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kunej T, Godnic I, Horvat S, Zorc M, Calin GA. Cross talk between microRNA and coding cancer genes. Cancer J. 2012;18:223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Li J, Liang S, Yu H, Zhang J, Ma D, Lu X. An inhibitory effect of miR-22 on cell migration and invasion in ovarian cancer. Gynecol Oncol. 2010;119:543–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Patel JB, Appaiah HN, Burnett RM, Bhat-Nakshatri P, Wang G, Mehta R, et al. Control of EVI-1 oncogene expression in metastatic breast cancer cells through microRNA miR-22. Oncogene. 2011;30:1290–301.CrossRefPubMedGoogle Scholar
  16. 16.
    Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z. Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis. 2013;34:539–49.CrossRefPubMedGoogle Scholar
  17. 17.
    Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, et al. Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 2013;73:990–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21:532–46.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. Embo Rep. 2008;9:582–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, et al. MiR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle. 2011;10:4256–71.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011;195:417–33.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol. 2010;20:R858–61.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38:5366–83.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344–57.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25:69–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Fang L, Du WW, Yang X, Chen K, Ghanekar A, Levy G, et al. Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. Faseb J. 2013;27:907–19.CrossRefPubMedGoogle Scholar
  31. 31.
    Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39:3026–41.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee DY, Jeyapalan Z, Fang L, Yang J, Zhang Y, Yee AY, et al. Expression of versican 3'-untranslated region modulates endogenous microRNA functions. PLoS ONE. 2010;5:e13599.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science. 2010;328:1563–6.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li J, Lu X. The emerging roles of 3' untranslated regions in cancer. Cancer Lett. 2013;337:22–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science. 2008;320:1643–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bava FA, Eliscovich C, Ferreira PG, Minana B, Ben-Dov C, Guigo R, et al. CPEB1 coordinates alternative 3'-UTR formation with translational regulation. Nature. 2013;495:121–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A. 2009;106:18740–4.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315:1576–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood. 2007;109:4599–606.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70:2789–98.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zhang L, Liu Y, Song F, Zheng H, Hu L, Lu H, et al. Functional SNP in the microRNA-367 binding site in the 3'UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci U S A. 2011;108:13653–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Rutnam ZJ, Yang BB. The non-coding 3' UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci. 2012;125:2075–85.CrossRefPubMedGoogle Scholar
  44. 44.
    Jia J, Yao P, Arif A, Fox PL. Regulation and dysregulation of 3'UTR-mediated translational control. Curr Opin Genet Dev. 2013;23:29–34.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yang L, Li Y, Cheng M, Huang D, Zheng J, Liu B, et al. A functional polymorphism at microRNA-629-binding site in the 3'-untranslated region of NBS1 gene confers an increased risk of lung cancer in southern and eastern Chinese population. Carcinogenesis. 2012;33:338–47.CrossRefPubMedGoogle Scholar
  46. 46.
    Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, et al. Expression of distinct RNAs from 3' untranslated regions. Nucleic Acids Res. 2011;39:2393–403.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jun Li
    • 1
    • 2
    • 3
  • Hailin Yu
    • 1
    • 2
    • 3
  • Meili Xi
    • 1
    • 2
    • 3
  • Duan Ma
    • 4
  • Xin Lu
    • 1
    • 2
    • 3
  1. 1.Department of Gynecology, Obstetrics and Gynecology HospitalFudan UniversityShanghaiChina
  2. 2.Department of Obstetrics and Gynecology of Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
  4. 4.Institute of Biomedical ScienceFudan UniversityShanghaiChina

Personalised recommendations