Skip to main content

Advertisement

Log in

Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case–control study

  • Research Article
  • Published:
Tumor Biology

Abstract

Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Many enzymes are involved in one-carbon metabolism (OCM), and single nucleotide polymorphisms (SNPs) in the corresponding genes may play a role in liver carcinogenesis. In this study, we enrolled 1500 HCC patients and 1500 cancer-free controls, which were frequency-matched by age, gender, and HBV infection status. Then eight SNPs from seven OCM genes (MTHFR, MTR, MTRR, FTHFD, GART, SHMT, and CBS) were evaluated. Results showed that six SNPs (MTHFR rs1801133, MTRR rs2287780, MTRR rs10380, FTHFD rs1127717, GART rs8971, and SHMT rs1979277) were significantly associated with HCC risk in Chinese population, with P values range from 2.26 × 10−4 to 0.035). The most significant association was detected for GART rs8971. Compared with individuals with the TT genotype, the age- and sex-adjusted odds ratio (OR) for developing HCC was 1.44 (95 % confidence interval (CI): 1.03–2.02) among those with the CC genotype and 1.30 (95 % CI: 1.10–1.53) for those with CT genotype. Under the log-additive model, each additional copy of minor allele C was associated with a 1.28-fold increased risk of HCC (OR = 1.28, 95 % CI: 1.12–1.45). These findings indicated that genetic variants in OCM genes might contribute to HCC susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan JM, Ross RK, Stanczyk FZ, Govindarajan S, Gao YT, Henderson BE, et al. A cohort study of serum testosterone and hepatocellular carcinoma in Shanghai, China. Int J Cancer. 1995;63:491–3.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang JY, Dai M, Wang X, Lu WQ, Li DS, Zhang MX, et al. A case-control study of hepatitis b and c virus infection as risk factors for hepatocellular carcinoma in Henan, China. Int J Epidemiol. 1998;27:574–8.

    Article  CAS  PubMed  Google Scholar 

  3. Yu MW, Yang YC, Yang SY, Chang HC, Liaw YF, Lin SM, et al. Androgen receptor exon 1 CAG repeat length and risk of hepatocellular carcinoma in women. Hepatology. 2002;36:156–63.

    Article  CAS  PubMed  Google Scholar 

  4. Su H, Zhao J, Xiong Y, Xu T, Zhou F, Yuan Y, et al. Large-scale analysis of the genetic and epigenetic alterations in hepatocellular carcinoma from Southeast China. Mutat Res. 2008;641:27–35.

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Ma L, Peng NF, Wang SJ, Li LQ. Relationship between GSTT1 gene polymorphism and hepatocellular carcinoma in patients from China. Asian Pac J Cancer Prev. 2012;13:4417–21.

    Article  PubMed  Google Scholar 

  6. Zheng J, Li C, Wu X, Yang Y, Hao M, Sheng S, et al. Astrocyte elevated gene-1 is a novel biomarker of epithelial-mesenchymal transition and progression of hepatocellular carcinoma in two China regions. Tumour Biol. 2014;35:2265–9.

    Article  CAS  PubMed  Google Scholar 

  7. Long XD, Zhao D, Wang C, Huang XY, Yao JG, Ma Y, et al. Genetic polymorphisms in DNA repair genes XRCC4 and XRCC5 and aflatoxin b1-related hepatocellular carcinoma. Epidemiology. 2013;24:671–81.

    Article  PubMed  Google Scholar 

  8. Song P. Standardizing management of hepatocellular carcinoma in China: devising evidence-based clinical practice guidelines. Biosci Trends. 2013;7:250–2.

    PubMed  Google Scholar 

  9. Yang D, Hanna DL, Usher J, LoCoco J, Chaudhari P, Lenz HJ, Setiawan VW, El-Khoueiry A. Impact of sex on the survival of patients with hepatocellular carcinoma: a surveillance, epidemiology, and end results analysis. Cancer. 2014. doi:10.1002/cncr.28912.

  10. El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go?. Hepatology. 2014

  11. Eggert T, McGlynn KA, Duffy A, Manns MP, Greten TF, Altekruse SF. Epidemiology of fibrolamellar hepatocellular carcinoma in the USA, 2000–10. Gut. 2013;62:1667–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rustgi VK. Epidemiology of hepatocellular carcinoma. Gastroenterol Clin N Am. 1987;16:545–51.

    CAS  Google Scholar 

  13. Butler LM, Arning E, Wang R, Bottiglieri T, Govindarajan S, Gao YT, et al. Prediagnostic levels of serum one-carbon metabolites and risk of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2013;22:1884–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu MY, Kuo CS, Lin CY, Lu CL, Syu Huang RF. Lymphocytic mitochondrial DNA deletions, biochemical folate status and hepatocellular carcinoma susceptibility in a case-control study. Br J Nutr. 2009;102:715–21.

    Article  CAS  PubMed  Google Scholar 

  15. Rosen MP, Shen S, McCulloch CE, Rinaudo PF, Cedars MI, Dobson AT. Methylenetetrahydrofolate reductase (MTHFR) is associated with ovarian follicular activity. Fertil Steril. 2007;88:632–8.

    Article  CAS  PubMed  Google Scholar 

  16. Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, Ueland PM. The methylenetetrahydrofolate reductase 677c → t polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. Am J Hum Genet. 2007;80:846–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasap M, Sazci A, Ergul E, Akpinar G. Molecular phylogenetic analysis of methylenetetrahydrofolate reductase family of proteins. Mol Phylogenet Evol. 2007;42:838–46.

    Article  CAS  PubMed  Google Scholar 

  18. Boccia S, Gianfagna F, Persiani R, La Greca A, Arzani D, Rausei S, et al. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and susceptibility to gastric adenocarcinoma in an Italian population. Biomarkers. 2007;12:635–44.

    Article  CAS  PubMed  Google Scholar 

  19. Qian X, Lu Z, Tan M, Liu H, Lu D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet. 2007;15:1239–45.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Press OA, Haiman CA, Yang DY, Gordon MA, Fazzone W, et al. Association of methylenetetrahydrofolate reductase gene polymorphisms and sex-specific survival in patients with metastatic colon cancer. J Clin Oncol. 2007;25:3726–31.

    Article  CAS  PubMed  Google Scholar 

  21. Leclerc D, Rozen R. Endoplasmic reticulum stress increases the expression of methylenetetrahydrofolate reductase through the IRE1 transducer. J Biol Chem. 2008;283:3151–60.

    Article  CAS  PubMed  Google Scholar 

  22. Toniutto P, Fabris C, Falleti E, Cussigh A, Fontanini E, Bitetto D, et al. Methylenetetrahydrofolate reductase C677T polymorphism and liver fibrosis progression in patients with recurrent hepatitis C. Liver Int. 2008;28:257–63.

    Article  CAS  PubMed  Google Scholar 

  23. Qi X, Sun X, Xu J, Wang Z, Zhang J, Peng Z. Associations between methylenetetrahydrofolate reductase polymorphisms and hepatocellular carcinoma risk in Chinese population. Tumour Biol. 2014;35:1757–62.

    Article  CAS  PubMed  Google Scholar 

  24. Mu LN, Cao W, Zhang ZF, Cai L, Jiang QW, You NC, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298c polymorphisms and the risk of primary hepatocellular carcinoma (HCC) in a Chinese population. Cancer Causes Control. 2007;18:665–75.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun H, Han B, Zhai H, Cheng X, Ma K. Significant association between MTHFR C677T polymorphism and hepatocellular carcinoma risk: a meta-analysis. Tumour Biol. 2014;35:189–93.

    Article  CAS  PubMed  Google Scholar 

  26. Leclerc D, Campeau E, Goyette P, Adjalla CE, Christensen B, Ross M, et al. Human methionine synthase: cDNA cloning and identification of mutations in patients of the cbIG complementation group of folate/cobalamin disorders. Hum Mol Genet. 1996;5:1867–74.

    Article  CAS  PubMed  Google Scholar 

  27. Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A. 1998;95:3059–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng C, Lingyan W, Yi H, Cheng Z, Huadan Y, Xuting X, et al. Association between TLR2, MTR, MTRR, XPC, TP73, TP53 genetic polymorphisms and gastric cancer: a meta-analysis. Clin Res Hepatol Gastroenterol. 2014;38:346–59.

    Article  CAS  PubMed  Google Scholar 

  29. Weiner AS, Boyarskikh UA, Voronina EN, Selezneva IA, Sinkina TV, Lazarev AF, et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk. Cancer Epidemiol. 2012;36:e95–100.

    Article  CAS  PubMed  Google Scholar 

  30. Jokic M, Brcic-Kostic K, Stefulj J, Catela Ivkovic T, Bozo L, Gamulin M, et al. Association of MTHFR, MTR, MTRR, RFC1, and DHFR gene polymorphisms with susceptibility to sporadic colon cancer. DNA Cell Biol. 2011;30:771–6.

    Article  CAS  PubMed  Google Scholar 

  31. Wettergren Y, Odin E, Carlsson G, Gustavsson B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol Med. 2010;16:425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu J, Zhou GW, Wang N, Wang YJ. MTRR A66G polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2010;124:779–84.

    Article  CAS  PubMed  Google Scholar 

  33. Shrubsole MJ, Gao YT, Cai Q, Shu XO, Dai Q, Jin F, et al. MTR and MTRR polymorphisms, dietary intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2006;15:586–8.

    Article  CAS  PubMed  Google Scholar 

  34. Welin M, Grossmann JG, Flodin S, Nyman T, Stenmark P, Tresaugues L, et al. Structural studies of tri-functional human GART. Nucleic Acids Res. 2010;38:7308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wynn SL, Fisher RA, Pagel C, Price M, Liu QY, Khan IM, et al. Organization and conservation of the GART/SON/DONSON locus in mouse and human genomes. Genomics. 2000;68:57–62.

    Article  CAS  PubMed  Google Scholar 

  36. Brodsky G, Barnes T, Bleskan J, Becker L, Cox M, Patterson D. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with down syndrome. Hum Mol Genet. 1997;6:2043–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the staffs who were involved in the subject recruitment, telephone interviews, sample preparation, and laboratory assays for their hard works.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-chen Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, C., Han, Yc. et al. Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case–control study. Tumor Biol. 36, 997–1002 (2015). https://doi.org/10.1007/s13277-014-2725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2725-z

Keywords

Navigation