Tumor Biology

, Volume 36, Issue 3, pp 1561–1566 | Cite as

Combinatorial immunotherapy of sorafenib and blockade of programmed death-ligand 1 induces effective natural killer cell responses against hepatocellular carcinoma

  • Yun Wang
  • Hongxia Li
  • Qi Liang
  • Bin Liu
  • Xiaqi Mei
  • Yingji Ma
Research Article

Abstract

Sorafenib, a multi-tyrosine kinase inhibitor, is a standard treatment for advanced hepatocellular carcinoma (HCC). Herein, we report that the combinatorial therapy of sorafenib and anti-programmed death-ligand 1 (PD-L1) monoclonal antibody (mAb) can be implemented with good results for HCC. Cancer mouse models were used to evaluate therapeutic efficacy and examine the immunologic mechanisms of the sorafenib/anti-PD-L1 mAb therapy. The combined administration of sorafenib and anti-PD-L1 mAb into tumor-bearing mice generated potent immune responses resulting in the complete eradication or remarkable reduction of tumor growth. In some instances, the sorafenib/anti-PD-L1 mAb therapy induced long-lasting protection against tumor rechallenges. The results indicate that NK cells but not CD4T cells or CD8 cells mediated the therapeutic efficacy of this combinatorial therapy. The overall results suggest that immunotherapy consisting of the combination of sorafenib/anti-PD-L1 mAb could be a promising new approach for treating patients with HCC.

Keywords

PD-1 Sorafenib Phosphorylation Therapeutic antibody Oncogene 

Notes

Conflicts of interest

None

Funding

Heilongjiang Province Natural Science Fund Project (D207016) Fund project of Heilongjiang Province Education Office (11501250).

References

  1. 1.
    Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39(4):486–92.CrossRefPubMedGoogle Scholar
  2. 2.
    Vinas A et al. Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus). Mar Biotechnol (NY). 2012;14(5):655–63.CrossRefGoogle Scholar
  3. 3.
    Ng CK et al. Deciphering the Sox-Oct partner code by quantitative cooperativity measurements. Nucleic Acids Res. 2012;40(11):4933–41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Coco C et al. Increased expression of CD133 and reduced dystroglycan expression are strong predictors of poor outcome in colon cancer patients. J Exp Clin Cancer Res. 2012;31:71.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang W et al. Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer. Cancer Res. 2008;68(8):2764–72.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Scott EL, Brann DW. Estrogen regulation of Dkk1 and Wnt/beta-catenin signaling in neurodegenerative disease. Brain Res. 2013;1514:63–74.CrossRefPubMedGoogle Scholar
  7. 7.
    Mok TS et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.CrossRefPubMedGoogle Scholar
  8. 8.
    Mitsudomi T et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou C et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced <i>PD-L1</i> mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12(8):735–42.CrossRefPubMedGoogle Scholar
  10. 10.
    Failli V, Bachy I, Rétaux S. Expression of the LIM-homeodomain gene <i>Lmx1a</i> (<i>dreher</i>) during development of the mouse nervous system. Mech Dev. 2002;118(1):225–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Murray KD, Choudary PV, Jones EG. Nucleus- and cell-specific gene expression in monkey thalamus. Proc Natl Acad Sci. 2007;104(6):1989–94.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fu W et al. Insights into HER2 signaling from step-by-step optimization of anti-HER2 antibodies. MAbs. 2014;6(4):978–90.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hu S et al. Comparison of the inhibition mechanisms of adalimumab and infliximab in treating tumor necrosis factor α-associated diseases from a molecular view. J Biol Chem. 2013;288(38):27059–67.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ferlay J et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  15. 15.
    Fujimoto-Ouchi K et al. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol. 2007;59(6):795–805.CrossRefPubMedGoogle Scholar
  16. 16.
    Bang Y-J et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.CrossRefPubMedGoogle Scholar
  17. 17.
    Kute T et al. Development of Herceptin resistance in breast cancer cells. Cytometry A. 2004;57(2):86–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Lu Y et al. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93(24):1852–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Nagy P et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a Herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65(2):473–82.PubMedGoogle Scholar
  20. 20.
    Price‐Schiavi SA et al. Rat Muc4 (sialomucin complex) reduces binding of anti‐ErbB2 antibodies to tumor cell surfaces, a potential mechanism for Herceptin resistance. Int J Cancer. 2002;99(6):783–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Scaltriti M et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst. 2007;99(8):628–38.CrossRefPubMedGoogle Scholar
  22. 22.
    Park J-G et al. Characteristics of cell lines established from human gastric carcinoma. Cancer Res. 1990;50(9):2773–80.PubMedGoogle Scholar
  23. 23.
    Kim SY et al. Trastuzumab inhibits the growth of human gastric cancer cell lines with HER2 amplification synergistically with cisplatin. Int J Oncol. 2008;32(1):89–95.PubMedGoogle Scholar
  24. 24.
    Cho H-S et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Knuefermann C et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22(21):3205–12.CrossRefPubMedGoogle Scholar
  26. 26.
    Scagliotti GV et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Li YM et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004;6(5):459–69.CrossRefPubMedGoogle Scholar
  28. 28.
    Geyer CE et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Konecny GE et al. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006;66(3):1630–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Schnitt SJ. Breast cancer in the 21st century: neu opportunities and neu challenges. Mod Pathol. 2001;14(3):213–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Bass AJ et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hussenet T et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One. 2010;5(1):e8960.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yuan P et al. Sex determining region Y-Box 2 (SOX2) is a potential cell-lineage gene highly expressed in the pathogenesis of squamous cell carcinomas of the lung. PLoS One. 2010;5(2):e9112.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tompkins DH et al. Sox2 activates cell proliferation and differentiation in the respiratory epithelium. Am J Respir Cell Mol Biol. 2011;45(1):101–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Tompkins DH et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One. 2009;4(12):e8248.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aksoy I et al. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming. Stem Cells. 2013;31(12):2632–46.CrossRefPubMedGoogle Scholar
  37. 37.
    Therasse P et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst. 2000;92(3):205–16.CrossRefGoogle Scholar
  38. 38.
    Franklin MC et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.CrossRefPubMedGoogle Scholar
  39. 39.
    Agus DB et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.CrossRefPubMedGoogle Scholar
  40. 40.
    Muthuswamy SK, Gilman M, Brugge JS. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol. 1999;19(10):6845–57.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yun Wang
    • 1
  • Hongxia Li
    • 1
  • Qi Liang
    • 1
  • Bin Liu
    • 2
  • Xiaqi Mei
    • 3
  • Yingji Ma
    • 1
  1. 1.Department of Infectious DiseaseThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
  2. 2.Department of Science and EducationHeilongjiang Province Center for Disease Control and PreventionHarbinChina
  3. 3.Department of NeurologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina

Personalised recommendations