Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 973–981 | Cite as

The CCL2/CCR2 axis enhances IL-6-induced epithelial-mesenchymal transition by cooperatively activating STAT3-Twist signaling

  • Wei Chen
  • Qiang Gao
  • Siqi Han
  • Fei Pan
  • Wei Fan
Research Article

Abstract

The pattern of secreted factors in the tumor microenvironment has been shown to initiate tumor epithelial-mesenchymal transition (EMT); however, little is known about their interplay undergoing this phenotypic switch. In this study, we revealed obvious coactions of cytokine IL-6 and chemokine CCL2 during EMT induction. We found that IL-6 effectively induced EMT and promoted tumor cell invasion, which could be markedly enhanced by addition of CCL2 in a CCR2-dependent manner. IL-6 and CCL2 induced each other and cooperatively elicited STAT3 phosphorylation; conversely, STAT3 regulated the production of IL-6 and CCL2, thus constituting a positive feedback loop to maintain and amplify STAT3 signaling, consequently promoting additional EMT events. Furthermore, CCL2 greatly enhanced IL-6-induced EMT events mainly by upregulating the expression of Twist. Genetic or pharmacological inhibition of STAT3 disrupted STAT3-centered loop and markedly suppressed Twist expression as well as IL-6/CCL2-mediated EMT induction. Thus, our findings highlighted the synergy of the two secreted factors of tumor microenvironment, in regulating transformed properties of non-small cell lung cancer (NSCLC).

Keywords

IL-6 CCL2 Coaction Epithelial-mesenchymal transition Tumor microenvironment Metastasis 

Notes

Conflicts of interest

None

References

  1. 1.
    Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Neel DS, Bivona TG. Secrets of drug resistance in NSCLC exposed by new molecular definition of EMT. Clin Cancer Res. 2013;19(1):3–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Soltermann A, Tischler V, Arbogast S, Braun J, Probst-Hensch N, Weder W, et al. Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer. Clin Cancer Res. 2008;14(22):7430–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Thomson S, Petti F, Sujka-Kwok I, Mercado P, Bean J, Monaghan M, et al. A systems view of epithelial-mesenchymal transition signaling states. Clin Exp Metastasis. 2011;28(2):137–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15(5):416–28.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118(3):277–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A, et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat. 2008;11(4–5):123–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145(6):926–40.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Moreno O, Lecanda J, Green JE, Segura V, Catena R, Serrano D, et al. VEGF elicits epithelial-mesenchymal transition (EMT) in prostate intraepithelial neoplasia (PIN)-like cells via an autocrine loop. Exp Cell Res. 2010;316(4):554–67.CrossRefPubMedGoogle Scholar
  14. 14.
    Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24(37):5764–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol. 2009;21(2):166–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Rose-John S, Waetzig GH, Scheller J, Grotzinger J, Seegert D. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007;11(5):613–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Rokavec M, Wu W, Luo JL. IL6-mediated suppression of miR-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell. 2012;45(6):777–89.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chang CH, Hsiao CF, Yeh YM, Chang GC, Tsai YH, Chen YM, et al. Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int J Cancer. 2013;132(9):1977–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhao Z, Cheng X, Wang Y, Han R, Li L, Xiang T, et al. Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis. PLoS One. 2014;9(4):e95884.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res. 2011;9(12):1658–67.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schweizer A, Dejager S, Bosi E. Comparison of vildagliptin and metformin monotherapy in elderly patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Obes Metab. 2009;11(8):804–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Kudo-Saito C, Shirako H, Ohike M, Tsukamoto N, Kawakami Y. CCL2 is critical for immunosuppression to promote cancer metastasis. Clin Exp Metastasis. 2013;30(4):393–405.CrossRefPubMedGoogle Scholar
  23. 23.
    Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ, et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med. 2013;5(9):1383–401.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Albini A, Magnani E, Noonan DM. The tumor microenvironment: biology of a complex cellular and tissue society. Q J Nucl Med Mol Imaging. 2010;54(3):244–8.PubMedGoogle Scholar
  25. 25.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70 Suppl 1:i104–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798–809.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang XW, Qin X, Qin CY, Yin YL, Chen Y, Zhu HL. Expression of monocyte chemoattractant protein-1 and CC chemokine receptor 2 in non-small cell lung cancer and its significance. Cancer Immunol Immunother. 2013;62(3):563–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu Y, Cai Z, Xiao G, Liu Y, Keller ET, Yao Z, et al. CCR2 expression correlates with prostate cancer progression. J Cell Biochem. 2007;101(3):676–85.CrossRefPubMedGoogle Scholar
  30. 30.
    Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96(1):34–40.PubMedGoogle Scholar
  31. 31.
    Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284(42):29087–96.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhou C, Liu J, Tang Y, Liang X. Inflammation linking EMT and cancer stem cells. Oral Oncol. 2012;48:1068–75.CrossRefPubMedGoogle Scholar
  33. 33.
    Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP, Yang J. Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 2013;73(2):662–71.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M, et al. Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem. 2008;283(21):14665–73.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Wei Chen
    • 1
  • Qiang Gao
    • 2
  • Siqi Han
    • 3
  • Fei Pan
    • 4
  • Wei Fan
    • 5
  1. 1.Department of RespiratoryNavy General HospitalBeijingChina
  2. 2.Department of GeriatricsSecond Affiliated Hospital of Harbin Medical UniversityHaerbinChina
  3. 3.Department of Medical OncologyJinling HospitalNanjingChina
  4. 4.Department of Gastroenterology and HepatologyChinese PLA General HospitalBeijingChina
  5. 5.Department of Anesthesiology, Huai’an First People’s HospitalNanjing Medical UniversityHuai’anChina

Personalised recommendations