Tumor Biology

, Volume 36, Issue 2, pp 909–914 | Cite as

The role of CYBA (p22phox) and catalase genetic polymorphisms and their possible epistatic interaction in cervical cancer

  • Stephanie Anais CastaldoEmail author
  • Alda Pereira da Silva
  • Andreia Matos
  • Ângela Inácio
  • Manuel Bicho
  • Rui Medeiros
  • Irina Alho
  • Maria Clara Bicho
Research Article


Human papillomavirus (HPV) infection is necessary but not a sufficient cause for the development of invasive cervical cancer (ICC). Epithelial tissues, target for HPV, are exposed to reactive oxygen species (ROS) associated with tumor initiation and progression. The NADPH oxidase (NOX) and catalase (CAT) are involved in hydrogen peroxide (H2O2) production and inactivation, respectively. P22phox is the NOX subunit encoded by the CYBA gene that has a functional polymorphism (C-242T). This protein is involved in the regulation of electron transfer to oxygen. CAT is a hemic enzyme that plays a role in regulating H2O2 concentration, with a functional polymorphism (C-262T) in its gene. We evaluated CYBA C-242T and CAT C262T genetic polymorphisms and their interaction in 132 women with ICC. We found that CYBA C-242T and CAT C262T genotype frequencies were significantly different between ICC and controls (χ 2 test, p = 0.017 and p = 0.009, respectively). Women with the C/T CYBA-242 genotype had a lower risk for ICC development (odds ratio (OR) = 0.515, 95 % confidence interval (CI) 0.291–0.914, p = 0.023) whereas T/T CAT-262 genotype carriers present an increased risk for ICC (OR = 3.034, 95 % CI 1.462–6.298, p = 0.003). Women with C/C genotype for CYBA and T/T genotype for CAT had an increased risk to develop ICC comparing with the interaction of the other possible genotypes of both genes (OR = 3.952, 95 % CI 1.075–14.521, p = 0.032). The CYBA C-242T and CAT C-262T genetic polymorphisms and their epistatic interactions can be associated with ICC through mechanisms related with the role of ROS in cell proliferation and apoptosis.


Oxidative stress Cervical cancer CYBA (p22phox) Catalase Polymorphism 



The authors would like to thank the Instituto de Investigação Científica Bento da Rocha Cabral for financial support regarding the determination of C-242T CYBA and C-262T CAT genetic polymorphisms.

Conflicts of interest



  1. 1.
    Muñoz N, Castellsagué X, de González AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006;31(24 Suppl 3):S3/1–10.Google Scholar
  2. 2.
    De Marco F. Oxidative stress and HPV carcinogenesis. Viruses. 2013;5(2):708–31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wu W-S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25(4):695–705.CrossRefPubMedGoogle Scholar
  4. 4.
    Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 2005;65(3):948–56.PubMedGoogle Scholar
  5. 5.
    Bechtel W, Bauer G. Catalase protects tumor cells from apoptosis induction by intercellular ROS signaling. Anticancer Res. 2009;29(11):4541–57.PubMedGoogle Scholar
  6. 6.
    Bechtel W, Bauer G. Modulation of intercellular ROS signaling of human tumor cells. Anticancer Res. 2009;29(11):4559–70. Google Scholar
  7. 7.
    Bauer G. Targeting extracellular ROS signaling of tumor cells. Anticancer Res. 2014;34(4):1467–82.PubMedGoogle Scholar
  8. 8.
    Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med. 2007;43(3):332–47.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sardina JL, López-Ruano G, Sánchez-Abarca LI, Pérez-Simón JA, Gaztelumendi A, Trigueros C, et al. p22phox-dependent NADPH oxidase activity is required for megakaryocytic differentiation. Cell Death Differ. 2010;17(12):1842–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Ushio-fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells*. J Biol Chem. 1996;271(38):23317–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Najafi M, Alipoor B, Shabani M, Amirfarhangi A, Ghasemi H. Association between rs4673 (C/T) and rs13306294 (A/G) haplotypes of NAD(P)H oxidase p22phox gene and severity of stenosis in coronary arteries. Gene. 2012;499(1):213–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Schreiber R, Ferreira-Sae MC, Ronchi J A, Pio-Magalhães J A, Cipolli J A, Matos-Souza JR, et al. The C242T polymorphism of the p22-phox gene (CYBA) is associated with higher left ventricular mass in Brazilian hypertensive patients. BMC Med Genet. BioMed Central Ltd; 2011;12(1):114.Google Scholar
  13. 13.
    Chang D, Hu ZL, Zhang L, Zhao YS, Meng QH, Guan QB, et al. Association of catalase genotype with oxidative stress in the predication of colorectal cancer: modification by epidemiological factors. Biomed Environ Sci. 2012;25(2):156–62.PubMedGoogle Scholar
  14. 14.
    Chelikani P, Ramana T, Radhakrishnan TM. Catalase: a repertoire of unusual features. Indian J Clin Biochem. 2005;20(2):131–5.Google Scholar
  15. 15.
    Khodayari S, Salehi Z, Asl SF, Aminian K, Mirzaei Gisomi N, Dalivandan ST. Catalase gene C-262T polymorphism: importance in ulcerative colitis. J Gastroenterol Hepatol. 2013;28(5):819–22.Google Scholar
  16. 16.
    Matos A, Moutinho J, Pinto D, Medeiros R. The influence of smoking and other cofactors on the time to onset to cervical cancer in a southern European population. Eur J Cancer Prev. 2005;14(5):485–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Lahiri DK, Nurnberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19(19):5444.Google Scholar
  18. 18.
    Mesquita FS, Dyer SN, Heinrich DA, Bulun SE, Marsh EE, Nowak RA. Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol Reprod. 2010;82(2):341–51.Google Scholar
  19. 19.
    Manda G, Nechifor MT, Neagu T-M. Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol [Internet]. 2009;3(1):342–66.CrossRefGoogle Scholar
  20. 20.
    Behrend L, Henderson G, Zwacka R. Molecular mechanisms of signalling molecular mechanisms of signalling transformation. Biochem Soc Trans. 2003;31(6):1441–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97–110.Google Scholar
  22. 22.
    Guzik TJ, West NEJ, Black E, McDonald D, Ratnatunga C, Pillai R, et al. Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. 2000;102(15):1744–7.Google Scholar
  23. 23.
    Wu Z, Lou Y, Jin W, Liu Y, Lu L, Chen Q, et al. Relationship of the p22phox (CYBA) gene polymorphism C242T with risk of coronary artery disease: a meta-analysis. PLoS One. 2013;8(9):e70885.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Comings DE, MacMurray JP. Molecular heterosis: a review. Mol Genet Metab. 2000;71(1–2):19–31.Google Scholar
  25. 25.
    Fabre E, Raynaud-Simon A, Golmard J, Hebert M, Dulcire X, Succari M, et al. Gene polymorphisms of oxidative stress enzymes: prediction of elderly renutrition. Am J Clin Nutr. 2008;4:1504–12.Google Scholar
  26. 26.
    Funke S, Risch A, Nieters A, Hoffmeister M, Stegmaier C, Seiler CM, et al. Genetic polymorphisms in genes related to oxidative stress (GSTP1, GSTM1, GSTT1, CAT, MnSOD, MPO, eNOS) and survival of rectal cancer patients after radiotherapy. J Cancer Epidemiol. 2009;2009:302047.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Stephanie Anais Castaldo
    • 1
    • 2
    Email author
  • Alda Pereira da Silva
    • 1
  • Andreia Matos
    • 1
  • Ângela Inácio
    • 1
    • 3
  • Manuel Bicho
    • 1
    • 3
  • Rui Medeiros
    • 4
  • Irina Alho
    • 5
  • Maria Clara Bicho
    • 1
    • 2
  1. 1.Genetics Laboratory and Environmental Health Institute, Faculty of MedicineUniversity of LisbonLisbonPortugal
  2. 2.Dermatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de LisboaLisbonPortugal
  3. 3.Instituto de Investigação Científica Bento da Rocha CabralLisbonPortugal
  4. 4.Molecular Oncology Group, Portuguese Institute of Oncology, Porto CentrePortoPortugal
  5. 5.Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de LisboaLisbonPortugal

Personalised recommendations