Tumor Biology

, Volume 36, Issue 2, pp 893–900 | Cite as

Effect of angiotensin receptor blockade on prevention and reversion of tamoxifen-resistant phenotype in MCF-7 cells

  • Soha Namazi
  • Ebrahim Sahebi
  • Javad Rostami-Yalmeh
  • Mansooreh Jaberipour
  • Mahboobeh Razmkhah
  • Ahmad Hosseini
  • Rita Arabsolghar
Research Article

Abstract

Tamoxifen (TAM) is a standard adjuvant endocrine therapy in postmenopausal breast cancer patients, but innate or acquired TAM resistance has remained to be a therapeutic challenge for clinicians. The aim of this study was to explore the possible participation of renin-angiotensin system (RAS) in the acquisition of TAM resistance and try to prevent and regress the resistance using an angiotensin II receptor type-1 (AGTR1) blocker, losartan. Establishment of TAM-resistant (TAM-R) cells was accomplished by continuous exposure of MCF-7 cells to 1 μmol/L TAM. MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to determine cell growth. Moreover, messenger RNA (mRNA) expression levels of AGTR1 and angiotensin II receptor type-2 (AGTR2) were measured by quantitative real-time polymerase chain reaction. A significant increase of AGTR1 and AGTR2 transcripts was observed in TAM-R cells compared to MCF-7 cells. Interestingly, losartan-TAM combination effectively resensitized TAM-R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest an important role of RAS in acquired TAM resistance and targeting of RAS by losartan may overcome TAM resistance phenomenon and provide a novel avenue for treatment of resistant breast cancers.

Keywords

Breast cancer Tamoxifen resistance Renin-angiotensin system Losartan MCF-7 

Notes

Acknowledgments

This study was financially supported by grants from Shiraz University of Medical Sciences (no. 91-01-36-4902), Iran National Science Foundation (no. 90003070), and Institute for Cancer Research (ICR). The funding sources only financially supported this study and were not involved in the study design, data analysis, interpretation of data, writing, editing, and submission of the manuscript. This work contains parts of the doctoral thesis of Ebrahim Sahebi. The authors would like to thank Dr. Shirin Ardeshir-Rouhani-Fard for proof reading the manuscript.

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi: 10.3322/caac.21166.CrossRefPubMedGoogle Scholar
  2. 2.
    Iqbal J, Ginsburg OM, Wijeratne TD, Howell A, Evans G, Sestak I, et al. Endometrial cancer and venous thromboembolism in women under age 50 who take tamoxifen for prevention of breast cancer: a systematic review. Cancer Treat Rev. 2012;38(4):318–28. doi: 10.1016/j.ctrv.2011.06.009.CrossRefPubMedGoogle Scholar
  3. 3.
    Oh SJ, Kim O, Lee JS, Kim JA, Kim MR, Choi HS, et al. Inhibition of angiogenesis by quercetin in tamoxifen-resistant breast cancer cells. Food Chem Toxicol. 2010;48(11):3227–34. doi: 10.1016/j.fct.2010.08.028.CrossRefPubMedGoogle Scholar
  4. 4.
    Carpenter R. Choosing early adjuvant therapy for postmenopausal women with hormone-sensitive breast cancer: aromatase inhibitors versus tamoxifen. Eur J Surg Oncol. 2008;34(7):746–55. doi: 10.1016/j.ejso.2008.01.011.CrossRefPubMedGoogle Scholar
  5. 5.
    Guo S, Li Y, Tong Q, Gu F, Zhu T, Fu L, et al. δEF1 down-regulates ER-α expression and confers tamoxifen resistance in breast cancer. PLoS One. 2012;7(12):e52380. doi: 10.1371/journal.pone.0052380.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barone I, Brusco L, Fuqua SA. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res. 2010;16(10):2702–8. doi: 10.1158/1078-0432.CCR-09-1753.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Johnston S, Saccani-Jotti G, Smith I, Salter J, Newby J, Coppen M, et al. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995;55(15):3331–8.PubMedGoogle Scholar
  8. 8.
    Johnston S, Dowsett M, Smith I, Sacks N, Haynes B, Jarman M, et al. Acquired tamoxifen resistance in human breast cancer and reduced intra-tumoral drug concentration. Lancet. 1993;342(8886):1521–2. doi: 10.1016/S0140-6736(05)80088-1.CrossRefPubMedGoogle Scholar
  9. 9.
    Clarke R, Currier S, Kaplan O, Lovelace E, Boulay V, Gottesman MM, et al. Effect of P-glycoprotein expression on sensitivity to hormones in MCF-7 human breast cancer cells. J Natl Cancer Inst. 1992;84(19):1506–12. doi: 10.1093/jnci/84.19.1506.CrossRefPubMedGoogle Scholar
  10. 10.
    Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan X-Y, et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science. 1997;277(5328):965–8. doi: 10.1126/science.277.5328.965.CrossRefPubMedGoogle Scholar
  11. 11.
    McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev. 1999;20(3):321–44. doi: 10.1210/edrv.20.3.0366.PubMedGoogle Scholar
  12. 12.
    Fichtner I, Becker M, Zeisig R, Sommer A. In vivo models for endocrine-dependent breast carcinomas: special considerations of clinical relevance. Eur J Cancer. 2004;40(6):845–51. doi: 10.1016/j.ejca.2003.11.030.CrossRefPubMedGoogle Scholar
  13. 13.
    Ring A, Dowsett M. Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 2004;11(4):643–58. doi: 10.1677/erc.1.00776.CrossRefPubMedGoogle Scholar
  14. 14.
    Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab. 2005;16(7):293–9. doi: 10.1016/j.tem.2005.07.009.CrossRefPubMedGoogle Scholar
  15. 15.
    Doi C, Egashira N, Kawabata A, Maurya DK, Ohta N, Uppalapati D, et al. Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice. BMC Cancer. 2010;10(1):67. doi: 10.1186/1471-2407-10-67.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264(3):224–36. doi: 10.1111/j.1365-2796.2008.01981.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Ager EI, Neo J, Christophi C. The renin–angiotensin system and malignancy. Carcinogenesis. 2008;29(9):1675–84. doi: 10.1093/carcin/bgn171.CrossRefPubMedGoogle Scholar
  18. 18.
    Choi CH, Park Y, Choi J-J, Song T, Song SY, Lee Y-Y, et al. Angiotensin II type I receptor and miR-155 in endometrial cancers: synergistic antiproliferative effects of anti-miR-155 and losartan on endometrial cancer cells. Gynecol Oncol. 2012;126(1):124–31. doi: 10.1016/j.ygyno.2012.04.020.CrossRefPubMedGoogle Scholar
  19. 19.
    Lacourcière Y, Asmar R. A comparison of the efficacy and duration of action of candesartan cilexetil and losartan as assessed by clinic and ambulatory blood pressure after a missed dose, in truly hypertensive patients: a placebo-controlled, forced titration study. Candesartan/Losartan study investigators. Am J Hypertens. 1999;12(12):1181–7. doi: 10.1016/S0895-7061(99)00142-9.CrossRefPubMedGoogle Scholar
  20. 20.
    Manolis AJ, Grossman E, Jelakovic B, Jacovides A, Bernhardi DC, Cabrera WJ, et al. Effects of losartan and candesartan monotherapy and losartan/hydrochlorothiazide combination therapy in patients with mild to moderate hypertension. Clin Ther. 2000;22(10):1186–203. doi: 10.1016/S0149-2918(00)83062-3.CrossRefPubMedGoogle Scholar
  21. 21.
    Nakai Y, Isayama H, Ijichi H, Sasaki T, Sasahira N, Hirano K, et al. Inhibition of renin–angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine. Br J Cancer. 2010;103(11):1644–8. doi: 10.1038/sj.bjc.6605955.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vinson GP, Barker S, Puddefoot JR. The renin–angiotensin system in the breast and breast cancer. Endocr Relat Cancer. 2012;19(1):R1–19. doi: 10.1530/ERC-11-0335.CrossRefPubMedGoogle Scholar
  23. 23.
    Ino K, Shibata K, Yamamoto E, Kajiyama H, Nawa A, Mabuchi Y, et al. Role of the renin-angiotensin system in gynecologic cancers. Curr Cancer Drug Targets. 2011;11(4):405–11. doi: 10.2174/156800911795538057.CrossRefPubMedGoogle Scholar
  24. 24.
    Namazi S, Ardeshir-Rouhani-Fard S, Abedtash H. The effect of renin angiotensin system on tamoxifen resistance. Med Hypotheses. 2011;77(1):152–5. doi: 10.1016/j.mehy.2011.04.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, et al. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003;144(3):1032–44. doi: 10.1210/en.2002-220620.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhao Y, Chen X, Cai L, Yang Y, Sui G, Fu S. Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF-7 breast cancer cells survival via PI3-kinase/Akt pathway. J Cell Physiol. 2010;225(1):168–73. doi: 10.1002/jcp.22209.CrossRefPubMedGoogle Scholar
  27. 27.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1):55–63. doi: 10.1016/0022-1759(83)90303-4.CrossRefPubMedGoogle Scholar
  28. 28.
    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 2012;13(1):134. doi: 10.1186/1471-2105-13-134.CrossRefGoogle Scholar
  29. 29.
    Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of β-catenin phosphorylation. Int J Cancer. 2006;118(2):290–301. doi: 10.1002/ijc.21355.CrossRefPubMedGoogle Scholar
  30. 30.
    Kilker RL, Hartl MW, Rutherford TM, Planas-Silva MD. Cyclin D1 expression is dependent on estrogen receptor function in tamoxifen-resistant breast cancer cells. J Steroid Biochem Mol Biol. 2004;92(1):63–71. doi: 10.1016/j.jsbmb.2004.05.005.CrossRefPubMedGoogle Scholar
  31. 31.
    Dorssers LC, van der Flier S, Brinkman A, van Agthoven T, Veldscholte J, Berns EM, et al. Tamoxifen resistance in breast cancer. Drugs. 2001;61(12):1721–33. doi: 10.2165/00003495-200161120-00004.CrossRefPubMedGoogle Scholar
  32. 32.
    Tahmasebi M, Barker S, Puddefoot J, Vinson G. Localisation of renin-angiotensin system (RAS) components in breast. Br J Cancer. 2006;95(1):67–74. doi: 10.1038/sj.bjc.6603213.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Greco S, Elia M, Muscella A, Storelli C, Marsigliante S. AT1 angiotensin II receptor mediates intracellular calcium mobilization in normal and cancerous breast cells in primary culture. Cell Calcium. 2002;32(1):1–10. doi: 10.1016/S0143-4160(02)00077-5.CrossRefPubMedGoogle Scholar
  34. 34.
    Puddefoot J, Udeozo U, Barker S, Vinson G. The role of angiotensin II in the regulation of breast cancer cell adhesion and invasion. Endocr Relat Cancer. 2006;13(3):895–903. doi: 10.1677/erc.1.01136.CrossRefPubMedGoogle Scholar
  35. 35.
    Muscella A, Greco S, Elia M, Storelli C, Marsigliante S. Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J Endocrinol. 2002;173(2):315–23. doi: 10.1677/joe.0.1730315.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen X, Meng Q, Zhao Y, Liu M, Li D, Yang Y, et al. Angiotensin II type 1 receptor antagonists inhibit cell proliferation and angiogenesis in breast cancer. Cancer Lett. 2013;328(2):318–24. doi: 10.1016/j.canlet.2012.10.006.CrossRefPubMedGoogle Scholar
  37. 37.
    Kikkawa F, Mizuno M, Shibata K, Kajiyama H, Morita T, Ino K, et al. Activation of invasiveness of cervical carcinoma cells by angiotensin II. Am J Obstet Gynecol. 2004;190(5):1258–63. doi: 10.1016/j.ajog.2003.12.013.CrossRefPubMedGoogle Scholar
  38. 38.
    Uemura H, Ishiguro H, Nakaigawa N, Nagashima Y, Miyoshi Y, Fujinami K, et al. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther. 2003;2(11):1139–47.PubMedGoogle Scholar
  39. 39.
    Suganuma T, Ino K, Shibata K, Kajiyama H, Nagasaka T, Mizutani S, et al. Functional expression of the angiotensin II type 1 receptor in human ovarian carcinoma cells and its blockade therapy resulting in suppression of tumor invasion, angiogenesis, and peritoneal dissemination. Clin Cancer Res. 2005;11(7):2686–94. doi: 10.1158/1078-0432.CCR-04-1946.CrossRefPubMedGoogle Scholar
  40. 40.
    Fujimoto Y, Sasaki T, Tsuchida A, Chayama K. Angiotensin II type 1 receptor expression in human pancreatic cancer and growth inhibition by angiotensin II type 1 receptor antagonist. FEBS Lett. 2001;495(3):197–200. doi: 10.1016/S0014-5793(01)02377-8.CrossRefPubMedGoogle Scholar
  41. 41.
    Arrieta O, Guevara P, Escobar E, García-Navarrete R, Pineda B, Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer. 2005;92(7):1247–52. doi: 10.1038/sj.bjc.6602483.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Greco S, Muscella A, Elia M, Salvatore P, Storelli C, Mazzotta A, et al. Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. J Cell Physiol. 2003;196(2):370–7. doi: 10.1002/jcp.10313.CrossRefPubMedGoogle Scholar
  43. 43.
    Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH. Pathways to tamoxifen resistance. Cancer Lett. 2007;256(1):1–24. doi: 10.1016/j.canlet.2007.03.016.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. PKC-ζ is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J Cell Physiol. 2003;197(1):61–8. doi: 10.1002/jcp.10336.CrossRefPubMedGoogle Scholar
  45. 45.
    Kosaka T, Miyajima A, Takayama E, Kikuchi E, Nakashima J, Ohigashi T, et al. Angiotensin II type 1 receptor antagonist as an angiogenic inhibitor in prostate cancer. Prostate. 2007;67(1):41–9. doi: 10.1002/pros.20486.CrossRefPubMedGoogle Scholar
  46. 46.
    Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun. 2002;294(2):441–7. doi: 10.1016/S0006-291X(02)00496-5.CrossRefPubMedGoogle Scholar
  47. 47.
    Nouet S, Nahmias C. Signal transduction from the angiotensin II AT < sub > 2</sub > receptor. Trends Endocrinol Metab. 2000;11(1):1–6. doi: 10.1016/S1043-2760(99)00205-2.CrossRefPubMedGoogle Scholar
  48. 48.
    Munk VC, de Miguel LS, Petrimpol M, Butz N, Banfi A, Eriksson U, et al. Angiotensin II induces angiogenesis in the hypoxic adult mouse heart in vitro through an AT2–B2 receptor pathway. Hypertension. 2007;49(5):1178–85. doi: 10.1161/HYPERTENSIONAHA.106.080242.CrossRefPubMedGoogle Scholar
  49. 49.
    Li H, Qi Y, Li C, Braseth LN, Gao Y, Shabashvili AE, et al. Angiotensin type 2 receptor-mediated apoptosis of human prostate cancer cells. Mol Cancer Ther. 2009;8(12):3255–65. doi: 10.1158/1535-7163.MCT-09-0237.CrossRefPubMedGoogle Scholar
  50. 50.
    Walther T, Menrad A, H-D O, Siemeister G, Paul M, Schirner M. Differential regulation of in vivo angiogenesis by angiotensin II receptors. FASEB J. 2003;17(14):2061–7. doi: 10.1096/fj.03-0129com.CrossRefPubMedGoogle Scholar
  51. 51.
    Rizkalla B, Forbes JM, Cooper ME, Cao Z. Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol. 2003;14(12):3061–71. doi: 10.1097/01.ASN.0000099374.58607.C9.CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang X, Lassila M, Cooper ME, Cao Z. Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. Hypertension. 2004;43(2):276–81. doi: 10.1161/01.HYP.0000113628.94574.0f.CrossRefPubMedGoogle Scholar
  53. 53.
    Clere N, Corre I, Faure S, Guihot AL, Vessières E, Chalopin M, et al. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int J Cancer. 2010;127(10):2279–91. doi: 10.1002/ijc.25234.CrossRefPubMedGoogle Scholar
  54. 54.
    De Paepe B, Verstraeten VL, De Potter CR, Bullock GR. Increased angiotensin II type-2 receptor density in hyperplasia, DCIS and invasive carcinoma of the breast is paralleled with increased iNOS expression. Histochem Cell Biol. 2002;117(1):13–9. doi: 10.1007/s00418-001-0356-0.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Soha Namazi
    • 1
  • Ebrahim Sahebi
    • 1
  • Javad Rostami-Yalmeh
    • 1
  • Mansooreh Jaberipour
    • 2
  • Mahboobeh Razmkhah
    • 2
  • Ahmad Hosseini
    • 2
  • Rita Arabsolghar
    • 3
  1. 1.Department of Pharmacotherapy, School of PharmacyShiraz University of Medical SciencesShirazIran
  2. 2.Shiraz Institute for Cancer Research, School of MedicineShiraz University of Medical SciencesShirazIran
  3. 3.Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran

Personalised recommendations