Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 871–876 | Cite as

Waltonitone induces apoptosis through mir-663-induced Bcl-2 downregulation in non-small cell lung cancer

  • Yi Zhang
  • Xiao Zhou
  • Xiaoman Xu
  • Meng Zhang
  • Xin Wang
  • Xue Bai
  • Hui Li
  • Liang Kan
  • Yong Zhou
  • Huiyan Niu
  • Ping He
Research Article

Abstract

Our previous study reported that waltonitone treatment inhibited proliferation and induced apoptosis of lung cancer cells. However, the mechanism of waltonitone-induced toxicity remains unclear. In the present study, we treated H460 and H3255 lung cancer cells using different concentration of waltonitone (0, 10, 20, 30 μmol/L). We observed that waltonitone inhibited cell viability and induced apoptosis in a concentration dependent manner, with upregulation of caspase-3 cleavage. We also observed upregulation of miR-663, a potential tumor suppressor, after waltonitone treatment. Suppression of miR-663 function using miR-663 inhibitor partly alleviated cell toxicity induced by waltonitone. In addition, both waltonitone treatment and transfection of miR-663 mimic upregulated Bcl-2 mRNA and protein expression. Bcl-2 transfection alleviated waltonitone-induced toxicity. Furthermore, transfection of miR-663 inhibitor upregulated Bcl-2 levels in both cell lines. In summary, the present study demonstrated that waltonitone induced apoptosis of lung cancer cells through, at least partly, miR-663-induced Bcl-2 downregulation.

Keywords

Waltonitone Lung cancer Apoptosis miR-663 

Notes

Acknowledgments

The study was supported by the National Natural Science Foundation of China (No. 81201833)

Conflicts of interest

None

References

  1. 1.
    Travis WD. Pathology of lung cancer. Clin Chest Med. 2002;23(1):65–81. viii.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.CrossRefPubMedGoogle Scholar
  3. 3.
    Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell. 2002;1(1):49–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346(2):92–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.CrossRefPubMedGoogle Scholar
  6. 6.
    O'Mahony D, Kummar S, Gutierrez ME. Non-small-cell lung cancer vaccine therapy: a concise review. J Clin Oncol. 2005;23(35):9022–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Z, Wang S, Qiu H, Duan C, Ding K, Wang Z. Waltonitone induces human hepatocellular carcinoma cells apoptosis in vitro and in vivo. Cancer Lett. 2009;286(2):223–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Y, Zhang GB, Xu XM, Zhang M, Qu D, Niu HY, et al. Suppression of growth of A549 lung cancer cells by waltonitone and its mechanisms of action. Oncol Rep. 2012;28(3):1029–35.PubMedGoogle Scholar
  9. 9.
    Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells. Biochem Pharmacol. 2010;80(12):2057–65.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L, et al. Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep. 2010;24(1):105–12.PubMedGoogle Scholar
  11. 11.
    Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215–30.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tian M, Schiemann WP. The TGF-beta paradox in human cancer: an update. Future Oncol. 2009;5(2):259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis. 2010;31(9):1561–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, et al. Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res. 2014;2014:258695.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pareja F, Macleod D, Shu C, Crary JF, Canoll PD, Ross AH, et al. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and phospho-BAD. Mol Cancer Res. 2014;12(7):987–1001.CrossRefPubMedGoogle Scholar
  16. 16.
    Hu CJ, Zhou L, Cai Y. Dihydroartemisinin induces apoptosis of cervical cancer cells via upregulation of RKIP and downregulation of Bcl-2. Cancer Biol Ther. 2014;15(3):279–88.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yi Zhang
    • 1
  • Xiao Zhou
    • 1
  • Xiaoman Xu
    • 2
  • Meng Zhang
    • 1
  • Xin Wang
    • 1
  • Xue Bai
    • 1
  • Hui Li
    • 1
  • Liang Kan
    • 1
  • Yong Zhou
    • 1
  • Huiyan Niu
    • 1
  • Ping He
    • 1
  1. 1.Department of GeriatricsShengjing Hospital of China Medical UniversityShenyangChina
  2. 2.Department of Respiratory MedicineShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations