Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 685–692 | Cite as

Expression of microRNA-96 and its potential functions by targeting FOXO3 in non-small cell lung cancer

  • Juan Li
  • Ping Li
  • Tengfei Chen
  • Ge Gao
  • Xiaonan Chen
  • Yuwen Du
  • Ren Zhang
  • Rui Yang
  • Wei Zhao
  • Shaozhi Dun
  • Feng Gao
  • Guojun Zhang
Research Article

Abstract

MicroRNAs are implicated in the regulation of various cellular processes, including proliferation, differentiation, cell death, and cell mobility, and can function either as oncogenes or tumor suppressors in tumor progression. The effects of the expression of miR-96 in non-small cell lung cancer (NSCLC) remain unclear. In our study, qRT-PCR (quantitative reverse transcription PCR) was performed to identify the miR-96 expression level in 68 paired NSCLC and adjacent normal lung tissues. Trans-well, cell counting kit-8, and apoptosis assays were used to evaluate the effects of miR-96 expression on cell invasion, proliferation, and apoptosis. Dual-luciferase reporter assay and Western blotting were used to verify whether FOXO3 was a potential major target gene of miR-96. Finally, the effect of FOXO3 on miR-96-induced cell survival was determined by transfection of the genes expressing FOXO3 lacking 3′UTR and miR-96. The expression level of miR-96 in NSCLC tissues was higher than that in adjacent normal lung tissues, and this increased expression was significantly associated with lymph node metastasis. In contrast to the cells in the blank and negative control groups, the number of cells migrating through the matrigel was significantly lower and the incidence of apoptosis was significantly higher in cells transfected with a miR-96 inhibitor. Western blotting and dual-luciferase reporter assays demonstrated that miR-96 can bind to the putative seed region in FOXO3 mRNA 3′UTR, and can significantly lower the expression of FOXO3. The introduction of FOXO3 cDNA without 3′UTR restored miR-96 induced cell apoptosis and invasion. MiR-96 is up-regulated in NSCLC tissues. Downregulation of miR-96 inhibits invasion and promotes apoptosis in NSCLC cells A549 and SPC-A-1 by targeting FOXO3. Therefore, our study improves our understanding of the mechanisms underlying NSCLC pathogenesis and may promote the development of novel targeted therapies.

Keywords

miR-96 FOXO3 NSCLC Proliferation Apoptosis Invasion 

Notes

Acknowledgments

This study was supported by the Wu Jieping Medical Foundation of China.

Conflicts of interest

None

References

  1. 1.
    Jemal A, Center MM, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19(8):1893–907.CrossRefPubMedGoogle Scholar
  2. 2.
    Ramalingam SS, Owonikoko TK, Khuri FR. Lung cancer: new biological insights and recent therapeutic advances. CA Cancer J Clin. 2011;61(2):91–112.CrossRefPubMedGoogle Scholar
  3. 3.
    Favaretto AG, Pasello G, Magro C. Second and third line treatment in advanced non-small cell lung cancer. Discov Med. 2009;8(43):204–9.PubMedGoogle Scholar
  4. 4.
    Marcus PM, Bergstralh EJ, Fagerstrom RM, et al. Lung cancer mortality in the Mayo Lung Project: impact of extended follow-up. J Natl Cancer Inst. 2000;92(16):1308–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  6. 6.
    Kasinski AL, Slack FJ. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11:849–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71.CrossRefPubMedGoogle Scholar
  8. 8.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Garzon R, Marcucci G. Potential of microRNAs for cancer diagnostics, prognostication and therapy. Curr Opin Oncol. 2012;24:655–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Hoshino I, Matsubara H. MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today. 2013;43:467–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Cho WC. MicroRNAs as therapeutic targets and their potential applications in cancer therapy. Expert Opin Ther Targets. 2012;16:747–59.CrossRefPubMedGoogle Scholar
  12. 12.
    Jones CI, Zabolotskaya MV, Newbury SF, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 2012;107:1987–96.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang X, Zeng J, Chen C, et al. The tumor suppressive role of miRNA-370 by targeting FOXM1 in acute myeloid leukemia. Mol Cancer. 2012;11:56.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ma L, Huang Y, Zhu W, Jun Y, et al. An integrated analysis of miRNA and mRNA expressions in non-small cell lung cancers. PLoS One. 2011;6(10):e26502.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin H, Dai T, Chen X, et al. Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One. 2011;5:e15797.CrossRefGoogle Scholar
  16. 16.
    Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci. 2007;120:2479–87.CrossRefPubMedGoogle Scholar
  19. 19.
    Hu MC, Lee DF, Ou-Yang F, et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell. 2004;117:225–37.CrossRefPubMedGoogle Scholar
  20. 20.
    Gregory RI, Shiekhattar R. MicroRNA biogenesis and cancer. Cancer Res. 2005;65:3509–12.CrossRefPubMedGoogle Scholar
  21. 21.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;857–66.Google Scholar
  22. 22.
    Esquela-Kerscher A, Slack FJ. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  23. 23.
    Bandrés E, Cubedo E, Zárate R, et al. Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 2006;29:1–10.Google Scholar
  24. 24.
    Pineau P, Volinia S, Battiston C, et al. MiR-221 over-expression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107:264–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Han Y, Chen J, Wang Y, et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One. 2011;6:e18286.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schaefer A, Jung M, Stephan C, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76.PubMedGoogle Scholar
  27. 27.
    Agirre X, Jiménez-Velasco A, Bandrés E, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6:1830–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhu W, Liu X, Hunag Y, et al. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer. 2011;11:393.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ozsolak F, Poling LL, Fisher DE, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev. 2008;22:3172–83.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Myatt SS, Wang J, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70:367–77.CrossRefPubMedGoogle Scholar
  31. 31.
    Jalvy-Delvaille S, Maurel M, Chabas S, et al. Molecular basis of differential target regulation by miR-96 and miR-182: the Glypican-3 as a model. Nucleic Acids Res. 2012;40:1356–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang JY, Zong CS, Ding QQ, et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MCM2-mediated degradation. Nat Cell Biol. 2008;10:370.CrossRefGoogle Scholar
  33. 33.
    Paik JH, Kollipara R, DePinho RA, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–23.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847–59.CrossRefPubMedGoogle Scholar
  35. 35.
    Alvarez B. Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature. 2001;413:744–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306:2105–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Tran H. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296:530–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsai WB. Functional interaction between FOXO3 and ATM regulates DNA damage response. Nat Cell Biol. 2008;10:460–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Furukawa-Hibi Y. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxid Redox Signal. 2005;7:752–60.CrossRefPubMedGoogle Scholar
  40. 40.
    Willcox BJ. FOXO3a genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A. 2008;105:13987–92.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Brunet A. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.CrossRefPubMedGoogle Scholar
  42. 42.
    Sunters A. FOXO3 transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 2003;278:49795–805.CrossRefPubMedGoogle Scholar
  43. 43.
    Yang JY. Induction of FOXO3a and Bim expression in response to ionizing radiation. Int J Oncol. 2006;29:643–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hu MC. IκB kinase promotes tumourigenesis through inhibition of Forkhead FOXO3. Cell. 2004;117:225–37.CrossRefPubMedGoogle Scholar
  45. 45.
    Seoane J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117:211–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Habashy HO. FOXO3a nuclear localisation is associated with good prognosis in luminal-like breast cancer. Breast Cancer Res Treat. 2011;129:11–21.CrossRefPubMedGoogle Scholar
  47. 47.
    Jiang Y. Foxo3a expression is a prognostic marker in breast cancer. PLoS One. 2013;8:e70746.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Paik JH. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128:309–23.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Miyamoto K. FOXO3 is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.CrossRefPubMedGoogle Scholar
  50. 50.
    Fei M. Low expression of Foxo3a is associated with poor prognosis in ovarian cancer patients. Cancer Invest. 2009;27:52–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Yang XB, Zhao JJ, Pan K, et al. Decreased expression of the FOXO3a gene is associated with poor prognosis in primary gastric adenocarcinoma patients. PLoS One. 2013;8(10):e78158.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shukla S, Shukla M, Gupta S, et al. Deregulation of FOXO3A during prostate cancer progression. Int J Oncol. 2009;34:1613–20.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Juan Li
    • 1
  • Ping Li
    • 1
  • Tengfei Chen
    • 1
  • Ge Gao
    • 2
  • Xiaonan Chen
    • 2
  • Yuwen Du
    • 2
  • Ren Zhang
    • 2
  • Rui Yang
    • 1
  • Wei Zhao
    • 3
  • Shaozhi Dun
    • 1
  • Feng Gao
    • 1
  • Guojun Zhang
    • 1
  1. 1.Department of Respiratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.College of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
  3. 3.Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations