Tumor Biology

, Volume 36, Issue 2, pp 1105–1113 | Cite as

Cripto-1 expression and its prognostic value in human bladder cancer patients

  • Bingbing Wei
  • Wei Jin
  • Jun Ruan
  • Zhuoqun Xu
  • You Zhou
  • Jiabei Liang
  • Huan Cheng
  • Ke Jin
  • Xing Huang
  • Peng Lu
  • Qiang Hu
Research Article


Cripto-1 is an important embryonic gene that involved in self-renewal and maintenance of pluripotency of stem cells. Overexpression of Cripto-1 has been found to be correlated with tumorigenesis and may affect tumor recurrence and metastasis. The previous studies indicate that Cripto-1 might be a potential prognostic biomarker for several malignancies. The aim of this study is to examine Cripto-1 expression pattern and clinicopathological significance in human bladder cancer patients. We investigated Cripto-1 expression in 30 paired bladder cancer tissues and corresponding noncancerous bladder tissues using real-time quantitative RT-PCR (qRT-PCR). Moreover, Cripto-1 expression in 130 bladder cancer specimens and bladder cancer T24 and 5637 cells were analyzed using immunohistochemistry and immunofluorescence assays. The recurrence/metastasis-free survival was assessed by Kaplan–Meier method and log-rank test. Cox regression was also used for univariate and multivariate analyses of prognostic factors. The results showed that Cripto-1 expression is increased in bladder cancer tissues and is significantly associated with tumor size (P = 0.005) and tumor grade (P = 0.035). In addition, the expression level of Cripto-1 in bladder cancer was also found to be significantly associated with SRY-related HMG-box gene 2 expression (P = 0.003) and Ki-67 (P = 0.001). Compared with the patients with low Cripto-1 expression, the patients with high Cripto-1 expression had significantly poorer recurrence/metastasis-free survival (P = 0.011). Cox regression showed that Cripto-1 might be an independent prognostic factor for recurrence/metastasis-free survival (P = 0.036). Our findings suggest that high Cripto-1 expression might be involved in the development of bladder cancer and a potentially effective prognostic marker in bladder cancer patients.


Cripto-1 Bladder cancer Prognosis 



The work was supported by grants from the Key Program of Hospital Management Center, China (YGZ1105); Youth Foundation of Jiangsu Health Department, China (Q201207); Science and Technology Development Foundation of Wuxi, China (CSE01N1108); and Foundation of Nanjing Medical University, China (NJMU034).

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  3. 3.
    Dinney CP, McConkey DJ, Millikan RE, Wu X, Bar-Eli M, Adam L, et al. Focus on bladder cancer. Cancer Cell. 2004;6:111–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Knowles MA. Molecular pathogenesis of bladder cancer. Int J Clin Oncol. 2008;13:287–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Li Y, Izumi K, Miyamoto H. The role of the androgen receptor in the development and progression of bladder cancer. Jpn J Clin Oncol. 2012;42:569–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Bomken S, Fiser K, Heidenreich O, Vormoor J. Understanding the cancer stem cell. Br J Cancer. 2010;103:439–45.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iqbal J, Chong PY, Tan PH. Breast cancer stem cells: an update. J Clin Pathol. 2013;66:485–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Nishida S, Hirohashi Y, Torigoe T, Inoue R, Kitamura H, Tanaka T, et al. Prostate cancer stem-like cells/cancer-initiating cells have an autocrine system of hepatocyte growth factor. Cancer Sci. 2013;104:431–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang S, Xu ZY, Wang LF, Su W. CD133+ cancer stem cells in lung cancer. Front Biosci. 2013;18:447–53.CrossRefGoogle Scholar
  10. 10.
    Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, et al. Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One. 2012;7:e50690.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Falso MJ, Buchholz BA, White RW. Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin. Anticancer Res. 2012;32:733–8.PubMedGoogle Scholar
  12. 12.
    Zhang Y, Wang Z, Yu J, Shi J, Wang C, Fu W, et al. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Lett. 2012;322:70–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Bianco C, Castro NP, Baraty C, Rollman K, Held N, Rangel MC, et al. Regulation of human Cripto-1 expression by nuclear receptors and DNA promoter methylation in human embryonal and breast cancer cells. J Cell Physiol. 2013;228:1174–88.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dono R, Montuori N, Rocchi M, De Ponti-Zilli L, Ciccodicola A, Persico MG. Isolation and characterization of the CRIPTO autosomal gene and its X-linked related sequence. Am J Hum Genet. 1991;49:555–65.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nagaoka T, Karasawa H, Turbyville T, Rangel MC, Castro NP, Gonzales M, et al. Cripto-1 enhances the canonical Wnt/beta-catenin signaling pathway by binding to LRP5 and LRP6 co-receptors. Cell Signal. 2013;25:178–89.CrossRefPubMedGoogle Scholar
  16. 16.
    Bianco C, Normanno N, Salomon DS, Ciardiello F. Role of the cripto (EGF-CFC) family in embryogenesis and cancer. Growth Factors. 2004;22:133–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Strizzi L, Bianco C, Normanno N, Salomon D. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene. 2005;24:5731–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Yoon HJ, Hong JS, Shin WJ, Lee YJ, Hong KO, Lee JI, et al. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma. Oral Oncol. 2011;47:1023–31.CrossRefPubMedGoogle Scholar
  19. 19.
    de Castro NP, Rangel MC, Nagaoka T, Salomon DS, Bianco C. Cripto-1: an embryonic gene that promotes tumorigenesis. Future Oncol. 2010;6:1127–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am J Pathol. 2012;180:2188–200.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bianco C, Rangel MC, Castro NP, Nagaoka T, Rollman K, Gonzales M, et al. Role of Cripto-1 in stem cell maintenance and malignant progression. Am J Pathol. 2010;177:532–40.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bianco C, Salomon DS. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin Ther Pat. 2010;20:1739–49.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3:230–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, et al. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31:1354–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D. SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics. 2011;8:139–47.PubMedGoogle Scholar
  26. 26.
    Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One. 2010;5:e11022.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lengerke C, Fehm T, Kurth R, Neubauer H, Scheble V, Muller F, et al. Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer. 2011;11:42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembele D, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One. 2010;5:e8960.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer. 2011;104:1410–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rodriguez-Alonso A, Pita-Fernandez S, Gonzalez-Carrero J, Nogueira-March JL. p53 and ki67 expression as prognostic factors for cancer-related survival in stage T1 transitional cell bladder carcinoma. Eur Urol. 2002;41:182–8. discussion 8–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Oderda M, Ricceri F, Pisano F, Fiorito C, Gurioli A, Casetta G, et al. Prognostic factors including Ki-67 and p53 in Bacillus Calmette-Guerin-treated non-muscle-invasive bladder cancer: a prospective study. Urol Int. 2013;90:184–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Cattoretti G, Becker MH, Key G, Duchrow M, Schluter C, Galle J, et al. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 1992;168:357–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Bertz S, Otto W, Denzinger S, Wieland WF, Burger M, Stohr R, et al. Combination of CK20 and Ki-67 Immunostaining analysis predicts recurrence, progression, and cancer-specific survival in pT1 urothelial bladder cancer. Eur Urol. 2014;65:218–26.CrossRefPubMedGoogle Scholar
  34. 34.
    Acikalin D, Oner U, Can C, Acikalin MF, Colak E. Predictive value of maspin and Ki-67 expression in transurethral resection specimens in patients with T1 bladder cancer. Tumori. 2012;98:344–50.PubMedGoogle Scholar
  35. 35.
    Shen Y, Guo X, Wang Y, Qiu W, Chang Y, Zhang A, et al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma. BMC Cancer. 2012;12:470.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ge N, Lin HX, Xiao XS, Guo L, Xu HM, Wang X, et al. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma. J Transl Med. 2010;8:94.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ruan J, Wei B, Xu Z, Yang S, Zhou Y, Yu M, et al. Predictive value of Sox2 expression in transurethral resection specimens in patients with T1 bladder cancer. Med Oncol. 2013;30:445.CrossRefPubMedGoogle Scholar
  38. 38.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Verga Falzacappa MV, Ronchini C, Reavie LB, Pelicci PG. Regulation of self-renewal in normal and cancer stem cells. FEBS J. 2012;279:3559–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Zeimet AG, Reimer D, Sopper S, Boesch M, Martowicz A, Roessler J, et al. Ovarian cancer stem cells. Neoplasma. 2012;59:747–55.CrossRefPubMedGoogle Scholar
  41. 41.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010;140:62–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26:611–23.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120:3326–39.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Strizzi L, Abbott DE, Salomon DS, Hendrix MJ. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle. 2008;7:1931–5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Byrne RL, Autzen P, Birch P, Robinson MC, Gullick WJ, Neal DE, et al. The immunohistochemical detection of cripto-1 in benign and malignant human bladder. J Pathol. 1998;185:108–11.CrossRefPubMedGoogle Scholar
  47. 47.
    Hong SP, Lee EK, Park JY, Jeon TJ, Bang S, Park S, et al. Cripto-1 overexpression is involved in the tumorigenesis of gastric-type and pancreatobiliary-type intraductal papillary mucinous neoplasms of the pancreas. Oncol Rep. 2009;21:19–24.PubMedGoogle Scholar
  48. 48.
    Wechselberger C, Strizzi L, Kenney N, Hirota M, Sun Y, Ebert A, et al. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene. 2005;24:4094–105.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhong XY, Zhang LH, Jia SQ, Shi T, Niu ZJ, Du H, et al. Positive association of up-regulated Cripto-1 and down-regulated E-cadherin with tumour progression and poor prognosis in gastric cancer. Histopathology. 2008;52:560–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Wu Z, Li G, Wu L, Weng D, Li X, Yao K. Cripto-1 overexpression is involved in the tumorigenesis of nasopharyngeal carcinoma. BMC Cancer. 2009;9:315.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Bingbing Wei
    • 1
  • Wei Jin
    • 2
  • Jun Ruan
    • 1
  • Zhuoqun Xu
    • 1
  • You Zhou
    • 3
  • Jiabei Liang
    • 4
  • Huan Cheng
    • 5
  • Ke Jin
    • 1
  • Xing Huang
    • 1
  • Peng Lu
    • 1
  • Qiang Hu
    • 1
  1. 1.Department of Urology, Affiliated Wuxi People’s HospitalNanjing Medical UniversityWuxiChina
  2. 2.Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Minerva Foundation Institute for Medical ResearchHelsinkiFinland
  4. 4.Department of Pathology, Affiliated Wuxi People’s HospitalNanjing Medical UniversityWuxiChina
  5. 5.Department of UrologyThe Affiliated Hospital of Xuzhou Medical CollegeXuzhouChina

Personalised recommendations