Tumor Biology

, Volume 36, Issue 2, pp 849–859 | Cite as

Secreted cyclophilin A mediates G1/S phase transition of cholangiocarcinoma cells via CD147/ERK1/2 pathway

  • Sumalee Obchoei
  • Kanlayanee Sawanyawisuth
  • Chaisiri Wongkham
  • Watchara Kasinrerk
  • Qizhi Yao
  • Changyi Chen
  • Sopit Wongkham
Research Article

Abstract

Cyclophilin A (CypA) was shown to be upregulated in human cholangiocarcinoma (CCA) tissues. Suppression of intracellular CypA (inCypA) significantly reduces cell proliferation in vitro and tumor growth in nude mice. In the present study, the effect and potential mechanism of secreted CypA (sCypA) on cell proliferation of CCA cell lines were further investigated. CCA cells were treated with sCypA-containing conditioned media (CM) or with purified recombinant human CypA (rhCypA). Cell proliferation, cell cycle, ERK1/2, p38 MAPK, NF-κB, and STAT3 activities were examined by MTS assay, flow cytometry, and Western blot. sCypA was detected in CM from MMNK1 (an immortalized human cholangiocyte cell line) and six CCA cell lines. The sCypA levels corresponded to the inCypA levels indicating the intracellular origin of sCypA. Both sCypA-containing CM and rhCypA significantly increased proliferation of CCA cells. CD147 depletion by shRNA-knockdown or neutralizing with a CD147-monoclonal antibody significantly reduced sCypA-, and rhCypA-mediated cell proliferation. Upon rhCypA treatment, ERK1/2 was rapidly phosphorylated; whereas neutralizing CD147 inhibited ERK1/2 phosphorylation. Cell cycle analysis showed a significant increase in S phase and decrease in G1 population in rhCypA-treated cells. The expression levels of cyclin D1 and phosphorylated-retinoblastoma protein in the rhCypA-treated cells were increased compared with those in the non-treated control cells. p38 MAPK pathway was shown to be suppressed in siCypA-treated cells. In summary, CypA is secreted from CCA cells and enhances cell proliferation in an autocrine/paracrine manner, at least via direct binding with CD147, which may activate the ERK1/2 and p38 MAPK signaling pathways.

Keywords

Secreted cyclophilin A CD147 G1/S transition Bile duct cancer ERK1/2 p38 MAPK 

Notes

Acknowledgments

This study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Health Cluster (SHeP-GMS), and Khon Kaen University to SW, and a Globalization Demonstration Project grant to CC from the Baylor College of Medicine’s Center for Globalization, Houston, Texas, USA, and the postdoctoral fellowship to S. Obchoei (PD 54210). We would like to thank Prof. James A. Will for the English presentation of this manuscript and the Research Instrument Center of KKU, Faculty of Medicine for technical support of the FACS analysis.

Conflicts of interest

None.

References

  1. 1.
    Vatanasapt V, Tangvoraphonkchai V, Titapant V, Pipitgool V, Viriyapap D, Sriamporn S. A high incidence of liver cancer in Khon Kaen Province, Thailand. Southeast Asian J Trop Med Public Health. 1990;21(3):489–94.PubMedGoogle Scholar
  2. 2.
    Sripa B. Pathobiology of opisthorchiasis: an update. Acta Trop. 2003;88(3):209–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Wiedmann MW, Mossner J. Molecular targeted therapy of biliary tract cancer-results of the first clinical studies. Curr Drug Targets. 2010;11(7):834–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu AX, Hezel AF. Development of molecularly targeted therapies in biliary tract cancers: reassessing the challenges and opportunities. Hepatology. 2011;53(2):695–704.CrossRefPubMedGoogle Scholar
  5. 5.
    Steinmann B, Bruckner P, Superti-Furga A. Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase. J Biol Chem. 1991;266(2):1299–303.PubMedGoogle Scholar
  6. 6.
    Zhu C, Wang X, Deinum J, Huang Z, Gao J, Modjtahedi N, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med. 2007;204(8):1741–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Krummrei U, Bang R, Schmidtchen R, Brune K, Bang H. Cyclophilin-A is a zinc-dependent DNA binding protein in macrophages. FEBS Lett. 1995;371(1):47–51.CrossRefPubMedGoogle Scholar
  8. 8.
    Galat A. Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr Top Med Chem. 2003;3(12):1315–47.CrossRefPubMedGoogle Scholar
  9. 9.
    Damsker JM, Bukrinsky MI, Constant SL. Preferential chemotaxis of activated human CD4+ T cells by extracellular cyclophilin A. J Leukoc Biol. 2007;82(3):613–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gwinn WM, Damsker JM, Falahati R, Okwumabua I, Kelly-Welch A, Keegan AD, et al. Novel approach to inhibit asthma-mediated lung inflammation using anti-CD147 intervention. J Immunol. 2006;177(7):4870–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sherry B, Yarlett N, Strupp A, Cerami A. Identification of cyclophilin as a proinflammatory secretory product of lipopolysaccharide-activated macrophages. Proc Natl Acad Sci U S A. 1992;89(8):3511–5.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Xu Q, Leiva MC, Fischkoff SA, Handschumacher RE, Lyttle CR. Leukocyte chemotactic activity of cyclophilin. J Biol Chem. 1992;267(17):11968–71.PubMedGoogle Scholar
  13. 13.
    Seizer P, Schonberger T, Schott M, Lang MR, Langer HF, Bigalke B, et al. EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation. Atherosclerosis. 2010;209(1):51–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Yang Y, Lu N, Zhou J, Chen ZN, Zhu P. Cyclophilin A upregulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology. 2008;47(9):1299–310.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang H, Chen J, Yang J, Qiao S, Zhao S, Yu L. Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochem Biophys Res Commun. 2007;361(3):763–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, et al. Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer. 2006;106(10):2284–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Yurchenko V, Constant S, Eisenmesser E, Bukrinsky M. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160(3):305–17.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Obchoei S, Wongkhan S, Wongkham C, Li M, Yao Q, Chen C. Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit. 2009;15(11):RA221–32.PubMedGoogle Scholar
  19. 19.
    Obchoei S, Weakley SM, Wongkham S, Wongkham C, Sawanyawisuth K, Yao Q, et al. Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer. 2011;10:102.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sawanyawisuth K, Wongkham C, Araki N, Zhao Q, Riggins GJ, Wongkham S. Serial analysis of gene expression reveals promising therapeutic targets for liver fluke-associated cholangiocarcinoma. Asian Pac J Cancer Prev. 2012;13(Suppl):89–93.PubMedGoogle Scholar
  21. 21.
    Sripa B, Leungwattanawanit S, Nitta T, Wongkham C, Bhudhisawasdi V, Puapairoj A, et al. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol. 2005;11(22):3392–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maruyama M, Kobayashi N, Westerman KA, Sakaguchi M, Allain JE, Totsugawa T, et al. Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation. 2004;77(3):446–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Chiampanichayakul S, Peng-in P, Khunkaewla P, Stockinger H, Kasinrerk W. CD147 contains different bioactive epitopes involving the regulation of cell adhesion and lymphocyte activation. Immunobiology. 2006;211(3):167–78.CrossRefPubMedGoogle Scholar
  24. 24.
    Li Z, Min W, Gou J. Knockdown of cyclophilin A reverses paclitaxel resistance in human endometrial cancer cells via suppression of MAPK kinase pathways. Cancer Chemother Pharmacol. 2013;72(5):1001–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Bauer K, Kretzschmar AK, Cvijic H, Blumert C, Loffler D, Brocke-Heidrich K, et al. Cyclophilins contribute to STAT3 signaling and survival of multiple myeloma cells. Oncogene. 2009;28(31):2784–95.CrossRefPubMedGoogle Scholar
  26. 26.
    Sun S, Guo M, Zhang JB, Ha A, Yokoyama KK, Chiu RH. Cyclophilin A (CypA) interacts with NF-kappaB subunit, p65/RelA, and contributes to NF-kappaB activation signaling. PLoS One. 2014;9(8):e96211.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sun S, Wang Q, Giang A, Cheng C, Soo C, Wang CY, et al. Knockdown of CypA inhibits interleukin-8 (IL-8) and IL-8-mediated proliferation and tumor growth of glioblastoma cells through down-regulated NF-kappaB. J Neurooncol. 2010;101(1):1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu G, Wan R, Hu Y, Ni J, Yin G, Xing M, et al. Pancreatic acinar cells-derived cyclophilin A promotes pancreatic damage by activating NF-kappaB pathway in experimental pancreatitis. Biochem Biophys Res Commun. 2014;444(1):75–80.CrossRefPubMedGoogle Scholar
  29. 29.
    Bowman T, Garcia R, Turkson J, Jove R. STATs in oncogenesis. Oncogene. 2000;19(21):2474–88.CrossRefPubMedGoogle Scholar
  30. 30.
    Dokduang H, Juntana S, Techasen A, Namwat N, Yongvanit P, Khuntikeo N, et al. Survey of activated kinase proteins reveals potential targets for cholangiocarcinoma treatment. Tumour Biol. 2013;34(6):3519–28.CrossRefPubMedGoogle Scholar
  31. 31.
    Isomoto H, Kobayashi S, Werneburg NW, Bronk SF, Guicciardi ME, Frank DA, et al. Interleukin 6 upregulates myeloid cell leukemia-1 expression through a STAT3 pathway in cholangiocarcinoma cells. Hepatology. 2005;42(6):1329–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. STAT3 as an oncogene. Cell. 1999;98(3):295–303.CrossRefPubMedGoogle Scholar
  33. 33.
    Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, et al. Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res. 2006;66(5):2544–52.CrossRefPubMedGoogle Scholar
  34. 34.
    Trachtenberg A, Pushkarsky T, Heine S, Constant S, Brichacek B, Bukrinsky M. The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis. BMC Res Notes. 2011;4:396.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang H, Li M, Chai H, Yan S, Lin P, Lumsden AB, et al. Effects of cyclophilin A on cell proliferation and gene expressions in human vascular smooth muscle cells and endothelial cells. J Surg Res. 2005;123(2):312–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Yurchenko V, Pushkarsky T, Li JH, Dai WW, Sherry B, Bukrinsky M. Regulation of CD147 cell surface expression: involvement of the proline residue in the CD147 transmembrane domain. J Biol Chem. 2005;280(17):17013–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Ralhan R, Masui O, Desouza LV, Matta A, Macha M, Siu KW. Identification of proteins secreted by head and neck cancer cell lines using LC-MS/MS: strategy for discovery of candidate serological biomarkers. Proteomics. 2011;11(12):2363–76.CrossRefPubMedGoogle Scholar
  38. 38.
    Chevalier F, Depagne J, Hem S, Chevillard S, Bensimon J, Bertrand P, et al. Accumulation of cyclophilin A isoforms in conditioned medium of irradiated breast cancer cells. Proteomics. 2012;12(11):1756–66.CrossRefPubMedGoogle Scholar
  39. 39.
    Andersen H, Jensen ON, Eriksen EF. A proteome study of secreted prostatic factors affecting osteoblastic activity: identification and characterisation of cyclophilin A. Eur J Cancer. 2003;39(7):989–95.CrossRefPubMedGoogle Scholar
  40. 40.
    Alonso L, Okada H, Pasolli HA, Wakeham A, You-Ten AI, Mak TW, et al. Sgk3 links growth factor signaling to maintenance of progenitor cells in the hair follicle. J Cell Biol. 2005;170(4):559–70.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013;126(Pt 2):613–24.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jinawath A, Akiyama Y, Yuasa Y, Pairojkul C. Expression of phosphorylated ERK1/2 and homeodomain protein CDX2 in cholangiocarcinoma. J Cancer Res Clin Oncol. 2006;132(12):805–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Meloche S, Pouyssegur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene. 2007;26(22):3227–39.CrossRefPubMedGoogle Scholar
  44. 44.
    Johnson C, Han Y, Hughart N, McCarra J, Alpini G, Meng F. Interleukin-6 and its receptor, key players in hepatobiliary inflammation and cancer. Transl Gastrointest Cancer. 2012;1(1):58–70.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Senggunprai L, Kukongviriyapan V, Prawan A, Kukongviriyapan U. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway. Phytother Res. 2013;28(6):841–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Seubwai W, Wongkham C, Puapairoj A, Khuntikeo N, Pugkhem A, Hahnvajanawong C, et al. Aberrant expression of NF-kappaB in liver fluke associated cholangiocarcinoma: implications for targeted therapy. PLoS One. 2014;9(8):e106056.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Seubwai W, Vaeteewoottacharn K, Hiyoshi M, Suzu S, Puapairoj A, Wongkham C, et al. Cepharanthine exerts antitumor activity on cholangiocarcinoma by inhibiting NF-kappaB. Cancer Sci. 2010;101(7):1590–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Tadlock L, Patel T. Involvement of p38 mitogen-activated protein kinase signaling in transformed growth of a cholangiocarcinoma cell line. Hepatology. 2001;33(1):43–51.CrossRefPubMedGoogle Scholar
  49. 49.
    Dai R, Li J, Fu J, Chen Y, Wang R, Zhao X, et al. The tyrosine kinase c-Met contributes to the pro-tumorigenic function of the p38 kinase in human bile duct cholangiocarcinoma cells. J Biol Chem. 2012;287(47):39812–23.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pan H, Luo C, Li R, Qiao A, Zhang L, Mines M, et al. Cyclophilin A is required for CXCR4-mediated nuclear export of heterogeneous nuclear ribonucleoprotein A2, activation and nuclear translocation of ERK1/2, and chemotactic cell migration. J Biol Chem. 2008;283(1):623–37.CrossRefPubMedGoogle Scholar
  51. 51.
    Dean N, Helman E, Aldridge J, Carroll W, Magnuson S, Rosenthal E. Anti-EMMPRIN treatment of HNSCC in an ex vivo model. Laryngoscope. 2010;120 Suppl 4:S146.CrossRefPubMedGoogle Scholar
  52. 52.
    Dean NR, Knowles JA, Helman EE, Aldridge JC, Carroll WR, Magnuson JS, et al. Anti-EMMPRIN antibody treatment of head and neck squamous cell carcinoma in an ex-vivo model. Anticancer Drugs. 2010;21(9):861–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dean NR, Newman JR, Helman EE, Zhang W, Safavy S, Weeks DM, et al. Anti-EMMPRIN monoclonal antibody as a novel agent for therapy of head and neck cancer. Clin Cancer Res. 2009;15(12):4058–65.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys. 2006;65(2):435–44.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Sumalee Obchoei
    • 1
    • 2
  • Kanlayanee Sawanyawisuth
    • 1
  • Chaisiri Wongkham
    • 1
  • Watchara Kasinrerk
    • 3
  • Qizhi Yao
    • 2
  • Changyi Chen
    • 2
  • Sopit Wongkham
    • 1
  1. 1.Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
  2. 2.Molecular Surgeon Research Center, Michael E. DeBakey Department of SurgeryBaylor College of MedicineHoustonUSA
  3. 3.Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand

Personalised recommendations