Tumor Biology

, Volume 36, Issue 2, pp 841–847 | Cite as

TERT polymorphisms rs2853669 and rs7726159 influence on prostate cancer risk in Russian population

  • Alexandra S. Shadrina
  • Uljana A. Boyarskikh
  • Natalja A. Oskina
  • Tatiana V. Sinkina
  • Alexandr F. Lazarev
  • Valentina D. Petrova
  • Maxim L. Filipenko
Research Article

Abstract

Telomere length and telomerase activity have been hypothesized to play a role in cancer development. The aim of our study was to investigate the association of allelic variants of three functional polymorphisms rs2853669, rs2736100, and rs7726159 in the telomerase reverse transcriptase (TERT) gene with the risk of the breast cancer and prostate cancer in Russian population. Six hundred sixty women with breast cancer, 372 men with prostate cancer, and corresponding control groups of 523 women and 363 men were included in the present case–control study. We observed an association of allele rs2853669 C with increased risk of prostate cancer (co-dominant model TC vs. TT OR = 1.65, P = 0.002; additive model OR = 1.42, P = 0.005; dominant model: OR = 1.64, P = 0.001) and allele rs7726159 A with reduced risk of this malignancy (сo-dominant model: AA vs. CC OR = 0.42, P = 0.002; additive model: OR = 0.69, P = 0.002; dominant model: OR = 0.67, P = 0.01; recessive model: OR = 0.48, P = 0.005). None of the studied polymorphisms showed an association with the risk of breast cancer. Our results provide evidence that the TERT gene variability modulate prostate cancer predisposition in ethnical Russians.

Keywords

TERT SNP Breast cancer Prostate cancer Russian population 

Notes

Acknowledgments

We thank the Altai Branch of the Russian Blokhin Cancer Research Centre group for support during the collection of clinical data.

Conflicts of interest

None

Supplementary material

13277_2014_2688_MOESM1_ESM.doc (39 kb)
Supplemental Table 1 Sequences of primers and probes. (DOC 39 kb)

References

  1. 1.
    Maser RS, DePinho RA. Connecting chromosomes, crisis, and cancer. Science. 2002;297:565–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Baird DM. Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med. 2010;12:e16.CrossRefPubMedGoogle Scholar
  3. 3.
    Vasa-Nicotera M, Brouilette S, Mangino M, Thompson JR, Braund P, Clemitson J-R, et al. Mapping of a major locus that determines telomere length in humans. Am J Hum Genet. 2005;76:147–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Forsyth NR, Wright WE, Shay JW. Telomerase and differentiation in multicellular organisms: turn it off, turn it on, and turn it off again. Differentiation. 2002;69:188–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Prescott J, Wentzensen IM, Savage SA, De Vivo I. Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res. 2012;730:75–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110:6021–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C, Lipman T, et al. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol. 2013;14:534–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Kumari A, Srinivasan R, Vasishta RK, Wig JD. Positive regulation of human telomerase reverse transcriptase gene expression and telomerase activity by DNA methylation in pancreatic cancer. Ann Surg Oncol. 2009;16:1051–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Mocellin S, Verdi D, Pooley KA, Landi MT, Egan KM, Baird DM, et al. Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst. 2012;104:840–54.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang B, Beeghly-Fadiel A, Long J, Zheng W. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011;12:477–88.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Purrington KS, Slager S, Eccles D, Yannoukakos D, Fasching PA, Miron P, et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis. 2014;35:1012–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin Al Olama A, et al. A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum Mol Genet. 2013;22:5056–64.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, Wang Z, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45:868–76.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G, et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet. 2008;40:1404–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Turnbull C, Rapley EA, Seal S, Pernet D, Renwick A, Hughes D, et al. Variants near DMRT1, TERT and ATF7IP are associated with testicular germ cell cancer. Nat Genet. 2010;42:604–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rafnar T, Sulem P, Stacey SN, Geller F, Gudmundsson J, Sigurdsson A, et al. Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet. 2009;41:221–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kote-Jarai Z, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, Dadaev T, Jugurnauth-Little S, et al. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression. Hum Mol Genet. 2013;22:2520–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet. 2013;45:371–84. 384e1–2.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Beesley J, Pickett HA, Johnatty SE, Dunning AM, Chen X, Li J, et al. Functional polymorphisms in the TERT promoter are associated with risk of serous epithelial ovarian and breast cancers. PLoS One. 2011;6:e24987.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45:422–7. 427e1–2.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liu Y, Cao L, Li Z, Zhou D, Liu W, Shen Q, et al. A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS One. 2014;9:e85043.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hsu C-P, Hsu N-Y, Lee L-W, Ko J-L. Ets2 binding site single nucleotide polymorphism at the hTERT gene promoter–effect on telomerase expression and telomere length maintenance in non-small cell lung cancer. Eur J Cancer. 2006;42:1466–74.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang W, Chen Y, Yang X, Fan J, Mi X, Wang J, et al. Functional haplotypes of the hTERT gene, leukocyte telomere length shortening, and the risk of peripheral arterial disease. PLoS One. 2012;7:e47029.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rachakonda PS, Hosen I, de Verdier PJ, Fallah M, Heidenreich B, Ryk C, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci U S A. 2013;110:17426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pellatt A, Wolff R, Torres-Mejia G, John E, Herrick J, Lundgreen A, et al. Telomere length, telomere-related genes, and breast cancer risk: the breast cancer health disparities study. Genes Chromosomes Cancer. 2013;52:595–609.PubMedGoogle Scholar
  27. 27.
    Johnatty SE, Beesley J, Chen X, Macgregor S, Duffy DL, Spurdle AB, et al. Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility “hot-spot”. PLoS Genet. 2010;6:e1001016.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Soerensen M, Thinggaard M, Nygaard M, Dato S, Tan Q, Hjelmborg J, et al. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis. Aging Cell. 2012;11:223–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Lan Q, Cawthon R, Gao Y, Hu W, Hosgood HD, Barone-Adesi F, et al. Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS One. 2013;8:e59230.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sheng X, Tong N, Tao G, Luo D, Wang M, Fang Y, et al. TERT polymorphisms modify the risk of acute lymphoblastic leukemia in Chinese children. Carcinogenesis. 2013;34:228–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Savage SA, Gadalla SM, Chanock SJ. The long and short of telomeres and cancer association studies. J Natl Cancer Inst. 2013;105:448–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA. The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2011;20:1238–50.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mirabello L, Huang W-Y, Wong JYY, Chatterjee N, Reding D, Crawford ED, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8:405–13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hurwitz LM, Heaphy CM, Joshu CE, Isaacs WB, Konishi Y, De Marzo AM, et al. Telomere length as a risk factor for hereditary prostate cancer. Prostate. 2014;74:359–64.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Alexandra S. Shadrina
    • 1
    • 2
  • Uljana A. Boyarskikh
    • 1
    • 2
  • Natalja A. Oskina
    • 1
  • Tatiana V. Sinkina
    • 3
  • Alexandr F. Lazarev
    • 3
  • Valentina D. Petrova
    • 3
  • Maxim L. Filipenko
    • 1
    • 2
    • 4
  1. 1.Institute of Chemical Biology and Fundamental MedicineNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Altai Branch of the Russian Blokhin Cancer Research CentreBarnaulRussia
  4. 4.Kazan Federal UniversityKazanRussia

Personalised recommendations