Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 1179–1190 | Cite as

Luteolin supplementation adjacent to aspirin treatment reduced dimethylhydrazine-induced experimental colon carcinogenesis in rats

  • Neamt H. A. Osman
  • Usama Z. Said
  • Ahmed M. El-Waseef
  • Esraa S. A. Ahmed
Research Article

Abstract

Previous studies have shown that aspirin is used in colon cancer treatment. However, long-term of Aspirin usage is limited to gastric and renal toxicity. Luteolin (LUT) has cancer prevention and anti-inflammatory effects. The present study was designed to investigate the effect of LUT supplementation and Aspirin treatment in dimethylhydrazine (DMH)-induced carcinogenesis in rats. DMH (20 mg/kg BW/week) treated rats received gavages with Aspirin (50 mg/kg BW/week) and LUT (0.2 mg/kg BW/day) for 15 weeks. DMH injections induce colon polyps and renal bleeding, significantly increasing carcinoembryonic antigen (CEA), cyclooxygenase-2 (COX-2), oxidative stress, and kidney function tests and reducing antioxidant markers. Either Aspirin or LUT gavages alone or combined produce a significant decrease in colon polyp number and size, significantly decreasing CEA, COX-2, and oxidative stress and increasing antioxidant markers. In conclusion, the supplementations of LUT adjacent to Aspirin in the treatment of DMH-induced carcinogenesis in rats reflect a better effect than the use of Aspirin alone.

Keywords

Dimethylhydrazine Aspirin Luteolin (LUT) Colon 

References

  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics. CA Cancer J Clin. 2010;60:277–300.CrossRefPubMedGoogle Scholar
  2. 2.
    Janne PA, Mayer RJ. Chemoprevention of colorectal cancer. Engl J Med. 2000;42:1960–8.CrossRefGoogle Scholar
  3. 3.
    Jain M, Cook GM, Davis FG, Grace MG, Howe GR, Miller AB. A case-control study of diet and colorectal cancer. Int J Cancer. 1980;26:757–68.CrossRefPubMedGoogle Scholar
  4. 4.
    English DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, Giles GG. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:1509–14.PubMedGoogle Scholar
  5. 5.
    Larsson SC, Rafter J, Holmberg L, Bergkvist L, Wolk A. Red meat consumption and risk of cancers of the proximal colon, distal colon and rectum: the Swedish Mammography Cohort. Int J Cancer. 2005;113:829–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, et al. Meat, fish, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97:906–16.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Newell LE, Heddle JA. The potent colon carcinogen, 1,2- dimethylhydrazine induces mutations primarily in the colon. Mutat Res. 2004;564:1–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Saini MK, Sharma P, Kaur J, Sanyal SN. The cyclooxygenase-2 inhibitor etoricoxib is a potent chemopreventive agent of colon carcinogenesis in the rat model. J Environ Pathol Toxicol Oncol. 2009;28:39–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Fiala E. Investigations into the metabolism and mode of action of the colon carcinogen 1, 2-dimethylhydrazine. Cancer. 1975;36:2407–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Andersen V, Vogel U. Systematic review: interactions between aspirin, and other nonsteroidal anti-inflammatory drugs, and polymorphisms in relation to colorectal cancer. Aliment Pharmacol Ther. 2014;40:147–59.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang D, Dubois RN. Prostaglandins and cancer. Gut. 2006;55(1):115–22.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bosetti C, Gallus S, Vecchia C. Aspirin and cancer risk: a summary review to 2007. Cancer Res. 2009;181:231–51.Google Scholar
  14. 14.
    Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Malone WA, Boone CW, et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr. 2000;130:467S–71S.PubMedGoogle Scholar
  15. 15.
    Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.PubMedGoogle Scholar
  17. 17.
    Fosslien E. Molecular pathology of cyclooxygenases-2 in neoplasia. Ann Clin Lab Sci. 2000;30:3–21.PubMedGoogle Scholar
  18. 18.
    Ashktorab H, Dawkins FW, Mohamed R, Larbi D, Smoot DT. Apoptosis induced by aspirin and 5-fluorouracil in human colonic adenocarcinoma cells. Dig Dis Sci. 2005;6:1025–32.CrossRefGoogle Scholar
  19. 19.
    Seung JM, Kim HI. Role of prostaglandins in colon cancer. Korean J Gastroenterol. 2008;51:274–9.Google Scholar
  20. 20.
    Peter CE, Alison MG, Garry GD, Mur L, Morgan G. Aspirin, salicylates, and cancer. Lancet. 2009;373:1301–9.CrossRefGoogle Scholar
  21. 21.
    Perez-Garcia F, Adzet T, Canigueral S. Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res. 2000;33:661–5.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee LT, Huang YT, Hwang JJ, Lee PP, Ke FC, Nair MP, et al. Blockade of the epidermal growth factor receptor tyrosine kinase activity by quercetin and apoptosis of pancreatic tumor cells. Anticancer Res. 2002;22(3):1615–27.PubMedGoogle Scholar
  23. 23.
    Samy RP, Gopalakrishnan P, Ignacimuthu S. Anti-tumor promoting potential of luteolin against 7, 12-dimethylbenz (a) anthracene-induced mammary tumors in rats. Chem Biol Interact. 2006;164(1–2):1–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Ashokkumar P, Sudhandiran G. Protective role of luteolin on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. Biomed Pharmacother. 2008;62:590–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Manju V, Nalini N. Chemopreventive potential of luteolin during colon carcinogenesis induced by 1,2-dimethylhydrazine. Ital J Biochem. 2005;54:268–75.PubMedGoogle Scholar
  26. 26.
    Nalini N, Manju V, Menon VP. Effect of coconut cake on the bacterial enzyme activity in 1,2-dimethylhydrazine induced colon cancer. Clin Chim Acta. 2004;342:203–10.CrossRefPubMedGoogle Scholar
  27. 27.
    Davis A, Patterson F. Aspirin reduces the incidence of colonic carcinoma in the dimethylhydrazine rat animal model. Intern Med J. 2008;24(3):301–3.Google Scholar
  28. 28.
    Mahmoud NN, Dannenberg AJ, Mestre J, Bilinski RT, Churchill MR, Martucci C, et al. Aspirin prevents tumors in a murine model of familial adenomatous polyposis. Surgery. 1998;124(2):225–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Anastasia K, Angeliki X, Eleni E, Panagiota K, Theodore T, Andreas P, et al. Luteolin reduces lipopolysaccharide induced lethal toxicity and expression of proinflammatory molecules in mice. Am J Respir Crit Care Med. 2002;165:818–23.CrossRefGoogle Scholar
  30. 30.
    Schirmeister J. Determination of creatinine in serum. Dtsch Med Wschr. 1964;89:1940.Google Scholar
  31. 31.
    Fawcett JK, Scott JE. J Clin Pathol. 1960;13:156–9.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 1972;97(151):142–5.CrossRefPubMedGoogle Scholar
  33. 33.
    Yoshioka T, Kawada K, Shimada T, Mori M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated oxygen toxicity in the blood. Am J Obstet Gynecol. 1979;135:372–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Minami AM, Yoshikawa H. A simplified assay method of superoxide dismutase activity for clinical use. Clin Chim Acta. 1979;92(3):337–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–69.PubMedGoogle Scholar
  37. 37.
    Beutler E, Duron O, et al. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8.PubMedGoogle Scholar
  38. 38.
    Goldberg, D.M. and Spooner, R. J. (1983). in Methods of enzymatic analysis (Bergmeyen, H.V. Ed.) 3rd edn. 3: 258 – 265.Verlog Chemie, Deerfield beach, FI.Google Scholar
  39. 39.
    Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.PubMedGoogle Scholar
  40. 40.
    Khan R, Sultana S. Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. Chem Biol Interact. 2011;192:193–200.CrossRefPubMedGoogle Scholar
  41. 41.
    Shiptz B, Klein E, Bklan G, Neufeld D, Nissan A, Freund HR, et al. Suppressive effects of aspirin on aberrant crypt foci in patients with colorectal cancer. Gut. 2003;52:1598–601.CrossRefGoogle Scholar
  42. 42.
    Manju V, Balasubramaniyan V, Nalini N. Rat colonic lipid peroxidation and antioxidant status: the effects of dietary luteolin on 1,2-dimethylhydrazine. Chall Cell Mol Biol Lett. 2005;10:535–51.Google Scholar
  43. 43.
    Fiala ES, Sohn OS, Hamilton SR. Effects of chronic dietary ethanol on in vivo and in vitro metabolism of methylazoxymethanol and on methylazoxymethanol-induced DNA methylation in the rat colon and liver. Cancer Res. 1987;47:5939–43.PubMedGoogle Scholar
  44. 44.
    Bhatnagar J, Tewari H, Bhatnagar M, Austin GE. Comparison of carcinoembryonic antigen in tissue and serum with grade and stage of colon cancer. Anticancer Res. 1999;19:2181–8.PubMedGoogle Scholar
  45. 45.
    Umesalma S, Sudhandiran G. Differential inhibitory effects of the polyphenol ellagic acid on inflammatory mediators NF-kappaB, iNOS, COX-2, TNF-alpha, and IL-6 in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. Basic Clin Pharmacol Toxicol. 2010;107:650–5. journal compilation _ 2010 Nordic Pharmacological Society.CrossRefPubMedGoogle Scholar
  46. 46.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology. 1994;107:1183–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Taketo MM. COX-2 and colon cancer. Inflamm Res. 1998;47:112–6.CrossRefGoogle Scholar
  48. 48.
    Kuznietsova HM, Ogloblya OV, Rybalchenko VK. Impact of dihydropyrrol derivative on the normal colonic mucosa of DMH-induced colon cancer rats compared with 5 fluorouracil. Exp Oncol. 2013;35(1):25–9.PubMedGoogle Scholar
  49. 49.
    Khan R, Khan AQ, Lateef A, Rehman MU, Tahir M, Hamiza OO, et al. Glycyrrhizic acid suppresses the development of precancerous lesions via regulating the hyperproliferation, inflammation, angiogenesis and apoptosis in the colon of Wistar rats. PLoS ONE. 2013;8(2):1–22 e56020.Google Scholar
  50. 50.
    Sharma P, Kaur J, Sanyal SN. Effect of etoricoxib, a cyclooxygenase-2 selective inhibitor on aberrant crypt formation and apoptosis in 1,2 dimethyl hydrazine induced colon carcinogenesis in rat model. Nutr Hosp. 2010;25(1):39–48.PubMedGoogle Scholar
  51. 51.
    Sengottuvelan M, Senthilkumar R, Nalini N. Modulatory influence of dietary resveratrol during different phases of 1, 2-dimethylhydrazine induced mucosal lipid-peroxidation, antioxidant status and aberrant crypt foci development in rat colon carcinogenesis. Biochim Biophys Acta. 2006;1760:1175–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Nandhakumar R, Salini K, Niranjali Devaraj S. Morin augments anticarcinogenic and antiproliferative efficacy against 7,12- dimethylbenz(a)-anthracene induced experimental mammary carcinogenesis. Mol Cell Biochem. 2012;364:79–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Rajeshkumar NV, Kuttan R. Modulation of carcinogenic response and antioxidant enzymes of rats administered with 1,2-dimethylhydrazine by Picroliv. Cancer Lett. 2003;191:137–43.CrossRefPubMedGoogle Scholar
  54. 54.
    Khan R, Khan AQ, Qamar W, Lateef A, Tahir M, Rehman MU, et al. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: probable role of p38MAPK and p53. Toxicol Appl Pharmacol. 2012;258:315–29.CrossRefPubMedGoogle Scholar
  55. 55.
    Kharchuk IV, Filins'ka OM, Iablons'ka SV, Rybal'chenko VK, Fiziolohichnyi Z. Effect of maleimide derivative on the morpho-functional state of the kidney in experimental colon carcinogenesis in rats. Fiziol Zh. 2010;56(6):62–9.PubMedGoogle Scholar
  56. 56.
    Vladimir S, Turusov, Chemeris GY. Renal cell tumors induced in CBA male mice by 1,2-dimethylhydrazine. Toxicol Pathol. 1992;20(4):570–5.CrossRefGoogle Scholar
  57. 57.
    Mostafa SA. Effect of allyl alcohol as a glutathione depleting agent on carbohydrate metabolism in rat. Egypt J Ger Soc Zool. 1998;26(A):13–34.Google Scholar
  58. 58.
    Michael JT, Mohan MN, Eugenia E. Aspirin use and risk of fatal cancer. Am Cancer Soc. 1992;53:322–7.Google Scholar
  59. 59.
    Nishihara R, Lochhead P, Kuchiba A, Yamauchi M, Liao X, Imamura Y, et al. Aspirin use and risk of colorectal cancer according to BRAF mutation status. JAMA. 2013;309:2563–71.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chang HC, Weng CF. Cyclooxygenase-2 level and culture conditions influence NS398-induced apoptosis and caspase activation in lung cancer cells. Oncol Rep. 2001;8:1321–5.PubMedGoogle Scholar
  61. 61.
    Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–11.PubMedGoogle Scholar
  62. 62.
    Davis A, Patterson F. Aspirin reduces the incidence of colonic carcinoma in the dimethylhydrazine rat animal model. Aust NZ J Med. 1994;24(3):301–3.CrossRefGoogle Scholar
  63. 63.
    Miliaras S, Miliaras D, Vrettou E, Zavitsanakis A, Kiskinis D. The effect of aspirin and high fibre diet on colorectal carcinoma: a comparative experimental study. Tech Coloproctol. 2004;8:59–61.CrossRefGoogle Scholar
  64. 64.
    Craven PA, De Rubertis FR. Effect of aspirin on 1,2 DMH induced colonic carcinogenesis. Carcinogenesis. 1992;4:541–6.CrossRefGoogle Scholar
  65. 65.
    Rosenberg L, Louik C, Shapiro S. Nonsteroidal anti- inflammatory drug use and reduced risk of large bowel cancer. Cancer. 1998;82:2326–33.CrossRefPubMedGoogle Scholar
  66. 66.
    Kanwar SS, Vaiphei K, Nehru B, Sanyal SN. Chemopreventive effects of nonsteroidal anti-inflammatory drugs in the membrane lipid composition and fluidity parameters of the 1,2-dimethylhydrazine-induced colon carcinogenesis in rats. Drug Chem Toxicol. 2007;30:293–309.CrossRefPubMedGoogle Scholar
  67. 67.
    Kanwar SS, Vaiphei K, Nehru B, Sanyal SN. Antioxidative effects of nonsteroidal anti-inflammatory drugs during the initiation stages of experimental colon carcinogenesis in rats. J Environ Pathol Toxicol Oncol. 2008;27:89–100.CrossRefPubMedGoogle Scholar
  68. 68.
    Marcela, C. T., Maria I. B., Jorge S. and Paulo M Hoff (2014): Primary prevention of colorectal cancer: myth or reality? WJG 20th Anniversary Special Issues (5): Colorectal cancer, 1-27.Google Scholar
  69. 69.
    Hall, J.E. (2011). Textbook of medical physiology. 12th ed. Philadelphia: Saunders Elsevier;p 307- 326.Google Scholar
  70. 70.
    Naughton CA. Drug induced nephrotoxicity. Am Fam Physician. 2008;78(6):743–50.PubMedGoogle Scholar
  71. 71.
    Peto R, Gray R, Collins R, Wheatley K, Hennekens C, Jamrozik K, et al. Randomised trial of prophylactic daily aspirin in British male doctors. Br Med J. 1988;296(6618):313–6.CrossRefGoogle Scholar
  72. 72.
    Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal antiinflammatory drugs. N Engl J Med. 1984;310:563–72.CrossRefPubMedGoogle Scholar
  73. 73.
    Gilman EA, Langman MJ, Cheng KK, Lancashire RJ. Effect of anti-inflammatory drugs on overall risk of common cancer: case-control study in general practice research database. BMJ. 2000;320:1642–6.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Luigi, D.L.; Laura, G.; Francesco, R.; Carlo, B. and Domenico, C. (2001): Aspirin, exercise and pituitary hormones. Official J. Am. College Sports Med., p2029-2035.Google Scholar
  75. 75.
    Taj S, Nagarajan B. Inhibition by quercetin and luteolin of chromosomal alterations induced by salted, deep-fried fish and mutton in rats. Mutat Res. 1996;369(1, 2):97–106.CrossRefPubMedGoogle Scholar
  76. 76.
    Manju V, Nalini N. Effect of luteolin on glycoproteins metabolism in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis. J Biochem Tech. 2009;1(2):57–61.Google Scholar
  77. 77.
    Yoon JH, Baek SJ. Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Med J. 2005;46:58596.Google Scholar
  78. 78.
    Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem. 2000;64:1813–20.CrossRefPubMedGoogle Scholar
  79. 79.
    Mutoh M, Takahashi M, Fukuda K, Komatsu H, Enya T, Matsushima-Hibiya Y, et al. Suppression by flavonoids of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells: structure-activity relationship. Jpn J Cancer Res. 2000;91:686–91.CrossRefPubMedGoogle Scholar
  80. 80.
    Robak J, Shridi F, Wolbis M, Krolikowska M. Screening of the influence of flavonoids on lipoxygenase and cyclooxygenase activity, as well as on nonenzymic lipid oxidation. Pol J Pharmacol Pharm. 1988;40:451–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Segal R, Lubart E, Leibovitz A, Iaina A, Caspi D. Renal effects of low dose aspirin in elderly patients. IMAJ. 2006;8:679–82.PubMedGoogle Scholar
  82. 82.
    Masroor MI, Elmi AH, Butt GD, Khan SJ. Low dose aspirin prophylaxis for cardiovascular disease in the elderly population: is it safe for the kidney? Ann Pak Inst Med Sci. 2010;6(1):11–4.Google Scholar
  83. 83.
    Chiang CT, Way TD, Lin JK. Sensitizing HER2-overexpressing cancer cells to luteolin-induced apoptosis through suppressing p21(WAF1/CIP1) expression with rapamycin. Mol Cancer Ther. 2007;6:2127–38.CrossRefPubMedGoogle Scholar
  84. 84.
    Kang KP, Park SK, Kim DH, Sung MJ, Jung YJ, Lee JE, et al. Luteolin ameliorates cisplatin-induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis. Nephrol Dial Transplant. 2011;26:814–22.CrossRefPubMedGoogle Scholar
  85. 85.
    McCord JM. The evolution of free radicals and oxidative stress. Am J Med. 2000;108(8):652–9.CrossRefPubMedGoogle Scholar
  86. 86.
    Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radic Biol Med. 1999;26:285–94.CrossRefPubMedGoogle Scholar
  87. 87.
    Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.CrossRefPubMedGoogle Scholar
  88. 88.
    Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti- inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull. 2002;25:1197–202.CrossRefPubMedGoogle Scholar
  89. 89.
    Cao G, Sofic E, Prior RL. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med. 1997;22:749–60.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Neamt H. A. Osman
    • 1
  • Usama Z. Said
    • 1
  • Ahmed M. El-Waseef
    • 2
  • Esraa S. A. Ahmed
    • 1
  1. 1.Radiation Biology Department, National Centre for Radiation Research and TechnologyAtomic Energy AuthorityNasr CityEgypt
  2. 2.College of ScienceEl Mansoura UniversityMansouraEgypt

Personalised recommendations