Tumor Biology

, Volume 36, Issue 1, pp 409–419 | Cite as

RNA interference-mediated knockdown of RhoGDI2 induces the migration and invasion of human lung cancer A549 cells via activating the PI3K/Akt pathway

  • Huiyan Niu
  • Baogang Wu
  • Yang Peng
  • Hongfang Jiang
  • Yi Zhang
  • Jiahe Wang
  • Yifei Zhang
  • Ping He
Research Article


Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a tumor suppressor gene for cellular migration and invasion. However, the underlying mechanism and effector targets of RhoGDI2 in lung cancer are still not fully understood. In this study, a vector-expressed small hairpin RNA (shRNA) of RhoGDI2 was transfected into the human lung cancer cell line A549. After the successful transfection, the down-regulation of RhoGDI2 promoted the proliferation, migration, and invasion of lung cancer cells in vitro through the increasing expression and activities of the matrix metallopeptidase 9 (MMP-9) and PI3K/Akt pathways. Transiently transfecting the small interfering RNA (siRNA) of MMP-9 into the RhoGDI2 shRNA cells reduced the MMP-9 expression. Both transfecting the siRNA and adding the MMP-9 antibody into the RhoGDI2 shRNA cells led to a decrease in the invasion and migration of the lung cancer cells. The blockade of the PI3K/Akt pathway by LY294002 resulted in abolishment of the effects of RhoGDI2 shRNA in Akt phosphorylation and MMP-9 expression. This result suggests that the down-regulated RhoGDI2 contributed to the migration and invasion of the lung cancer cell line via activating the PI3K/Akt pathway and the ensuing increase in the expression and activity of MMP-9. In conclusion, we report that the shRNA-mediated knockdown of RhoGDI2 induces the invasion and migration of lung cancer due to cross-talk with the PI3K/Akt pathway and MMP-9. Verifying the role and molecular mechanism of the participation of RhoGDI2 in the migration and invasion of lung cancer may provide a target for better treatment.


RhoGDI2 Lung cancer Metastasis MMP-9 PI3K/Akt 


  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29. doi: 10.3322/caac.20138.CrossRefPubMedGoogle Scholar
  2. 2.
    Kanne JP. Screening for lung cancer: what have we learned? Am J Roentgenol. 2014;202(3):530–5. doi: 10.2214/ajr.13.11540.CrossRefGoogle Scholar
  3. 3.
    Hirsch FR, Franklin WA, Gazdar AF, Bunn PA. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 2001;7(1):5–22.PubMedGoogle Scholar
  4. 4.
    DerMardirossian C, Bokoch GM. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 2005;15(7):356–63. doi: 10.1016/j.tcb.2005.05.001.CrossRefPubMedGoogle Scholar
  5. 5.
    Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochimica et Biophysica Acta (BBA). Rev on Cancer. 2009;1796(2):91–8. doi: 10.1016/j.bbcan.2009.03.003.Google Scholar
  6. 6.
    Titus B, Frierson HF, Conaway M, Ching K, Guise T, Chirgwin J, et al. Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res. 2005;65(16):7320–7. doi: 10.1158/0008-5472.can-05-1403.CrossRefPubMedGoogle Scholar
  7. 7.
    Li X, Wang J, Zhang X, Zeng Y, Liang L, Ding Y. Overexpression of RhoGDI2 correlates with tumor progression and poor prognosis in colorectal carcinoma. Ann Surg Oncol. 2012;19(1):145–53. doi: 10.1245/s10434-011-1944-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets. 2013;13(3):234–44.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Deryugina E, Quigley J. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25(1):9–34. doi: 10.1007/s10555-006-7886-9.CrossRefPubMedGoogle Scholar
  10. 10.
    Niu H, Li H, Xu C, He P. Expression profile of RhoGDI2 in lung cancers and role of RhoGDI2 in lung cancer metastasis. Oncol Rep. 2010;24(2):465–71. doi: 10.3892/or_00000880.PubMedGoogle Scholar
  11. 11.
    Said N, Theodorescu D. Pathways of metastasis suppression in bladder cancer. Cancer Metastasis Rev. 2009;28(3–4):327–33. doi: 10.1007/s10555-009-9197-4.CrossRefPubMedGoogle Scholar
  12. 12.
    Harding MA, Theodorescu D. RhoGDI2: a new metastasis suppressor gene: discovery and clinical translation. Urol Oncol. 2007;25(5):401–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Guo LY, Li YM, Qiao L, Liu T, Du YY, Zhang JQ, et al. Notch2 regulates matrix metallopeptidase 9 via PI3K/AKT signaling in human gastric carcinoma cell MKN-45. World j of gastroenterol : WJG. 2012;18(48):7262–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nutt JE, Durkan GC, Mellon JK, Lunec J. Matrix metalloproteinases (MMPs) in bladder cancer: the induction of MMP9 by epidermal growth factor and its detection in urine. BJU Int. 2003;91(1):99–104. doi: 10.1046/j.1464-410X.2003.04020.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Schveigert D, Cicenas S, Bruzas S, Samalavicius NE, Gudleviciene Z, Didziapetriene J. The value of MMP-9 for breast and non-small cell lung cancer patients’ survival. Advances in Medical Sciences 2013. p. 73.Google Scholar
  16. 16.
    Cho HJ, Baek KE, Yoo J. RhoGDI2 as a therapeutic target in cancer. Expert Opin Ther Targets. 2010;14(1):67–75. doi: 10.1517/14728220903449251.CrossRefPubMedGoogle Scholar
  17. 17.
    Said N, Theodorescu D. RhoGDI2 suppresses bladder cancer metastasis via reduction of inflammation in the tumor microenvironment. Oncoimmunol. 2012;1(7):1175–7.CrossRefGoogle Scholar
  18. 18.
    Ma L, Xu G, Sotnikova A, Szczepanowski M, Giefing M, Krause K, et al. Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. Br J Haematol. 2007;139(2):217–23. doi: 10.1111/j.1365-2141.2007.06782.x.CrossRefPubMedGoogle Scholar
  19. 19.
    Stevens EV, Banet N, Onesto C, Plachco A, Alan JK, Nikolaishvili-Feinberg N, et al. RhoGDI2 antagonizes ovarian carcinoma growth, invasion and metastasis. Small GTPases. 2011;2(4):202–10.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Moon HG, Jeong SH, Ju YT, Jeong CY, Lee JS, Lee YJ, et al. Up-regulation of RhoGDI2 in human breast cancer and its prognostic implications. Cancer res and treat : off j of Korean Cancer Assoc. 2010;42(3):151–6.CrossRefGoogle Scholar
  21. 21.
    Cho HJ, Baek KE, Park S-M, Kim I-K, Choi Y-L, Cho H-J, et al. RhoGDI2 expression is associated with tumor growth and malignant progression of gastric cancer. Clin Cancer Res. 2009;15(8):2612–9. doi: 10.1158/1078-0432.ccr-08-2192.CrossRefPubMedGoogle Scholar
  22. 22.
    Moissoglu K, McRoberts KS, Meier JA, Theodorescu D, Schwartz MA. Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases. Cancer Res. 2009;69(7):2838–44. doi: 10.1158/0008-5472.can-08-1397.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shukla S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007;121(7):1424–32. doi: 10.1002/ijc.22862.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen J, Wang Q, Fu X, Huang X, Chen X, Cao L, et al. Involvement of PI3K/PTEN/AKT/mTOR pathway in invasion and metastasis in hepatocellular carcinoma: association with MMP-9. Hepatol Res. 2009;39(2):177–86. doi: 10.1111/j.1872-034X.2008.00449.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Li L, Tan J, Zhang Y, Han N, Di X, Xiao T, et al. DLK1 promotes lung cancer cell invasion through upregulation of MMP9 expression depending on notch signaling. PLoS ONE. 2014;9(3):e91509. doi: 10.1371/journal.pone.0091509.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Qian Z, Zhao X, Jiang M, Jia W, Zhang C, Wang Y, et al. Downregulation of Cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9. BMC Cancer. 2012;12(1):442.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nalla AK, Gorantla B, Gondi CS, Lakka SS, Rao JS. Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther. 2010;17(9):599–613.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Veeravalli KK, Rao JS. MMP-9 and uPAR regulated glioma cell migration. Cell Adhes Migr. 2012;6(6):509–12.CrossRefGoogle Scholar
  29. 29.
    Kotipatruni RR, Nalla AK, Asuthkar S, Gondi CS, Dinh DH, Rao JS. Apoptosis induced by knockdown of uPAR and MMP-9 is mediated by inactivation of EGFR/STAT3 signaling in medulloblastoma. PLoS ONE. 2012;7(9):e44798. doi: 10.1371/journal.pone.0044798.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Heavey S, O’Byrne KJ, Gately K. Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev. 2014;40(3):445–56. doi: 10.1016/j.ctrv.2013.08.006.CrossRefPubMedGoogle Scholar
  31. 31.
    Polivka Jr J, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75. doi: 10.1016/j.pharmthera.2013.12.004.CrossRefPubMedGoogle Scholar
  32. 32.
    Dilly A-k, Ekambaram P, Guo Y, Cai Y, Tucker SC, Fridman R, et al. Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB. Int J Cancer. 2013;133(8):1784–91. doi: 10.1002/ijc.28165.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Huiyan Niu
    • 1
  • Baogang Wu
    • 1
  • Yang Peng
    • 1
  • Hongfang Jiang
    • 1
  • Yi Zhang
    • 1
  • Jiahe Wang
    • 1
  • Yifei Zhang
    • 1
  • Ping He
    • 1
  1. 1.Department of GeriatricsShengjing Hospital of China Medical UniversityShenyangPeople’s Republic of China

Personalised recommendations