Tumor Biology

, Volume 36, Issue 2, pp 711–718 | Cite as

Combined analysis of copy number alterations by single-nucleotide polymorphism array and MYC status in non-metastatic breast cancer patients: comparison according to the circulating tumor cell status

  • R. Nadal
  • M. Salido
  • L. Nonell
  • M. Rodríguez-Rivera
  • E. Puigdecanet
  • J. L. Garcia-Puche
  • M. Macià
  • J. M. Corominas
  • M. J. Serrano
  • J. A. Lorente
  • F. Solé
Research Article
  • 283 Downloads

Abstract

Recent technological advances have made it possible to detect circulating tumor cells (CTCs) as a prognostic marker in operable breast cancer patients. Whether the presence of CTCs in cancer patients correlates with molecular alterations in the primary tumor has not been widely explored. We identified 14 primary breast cancer specimens with known CTC status, in order to evaluate the presence of differential genetic aberrations by using SNP array assay. There was a global increase of altered genome, CNA, and copy-neutral loss of heterozygosity (cn-LOH) observed in the CTC-positive (CTC+) versus CTC-negative (CTC) cases. As the preliminary results showed a higher proportion of copy number alteration (CNA) at 8q24 (MYC loci) and the available evidence supporting the role of MYC in the processes cancer metastases is conflicting, MYC status was determined in tissue microarray sections in a larger series of patients (n = 49) with known CTC status using FISH. MYC was altered in 62 % (16/26) CTC+ patients and in 43 % (6/14) CTC patients (p = 0.25). Based on the observation in our study, future studies involving a larger number of patients should be performed in order to definitively define if this correlation exists.

Keywords

Breast cancer MYC Circulating tumor cells Single-nucleotide polymorphism 

Abbreviations

CTCs

Circulating tumor cells

CTC+

CTC-positive

CTC

CTC-negative

BC

Breast cancer

SNP

Single-nucleotide polymorphism

CNAs

Copy number aberrations

PCA

Prostate cancer

LOH

Loss of heterozygosity

cn-LOH

Copy-neutral LOH

ER

Estrogen receptor

CK

Cytokeratin

PR

Progesterone receptor

IHC

Immunohistochemistry

HR

Hormonal receptor

SORI

Smallest overlapping regions of imbalance

Notes

Acknowledgments

We thank the patients for their participation in the study. We also thank Mr. John Pope for excellent editorial support.

Conflicts of interest

None

Grant support

This work was supported in part by a grant from the Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo, Spain (PI 08/0334); by the Red Temática de Investigación Cooperativa en Cáncer (RTICC, FEDER) (RD12/0036/0044); 2014 SGR225 (GRE) Generalitat de Catalunya the FIS [PI08/0334] FEDER; and the Public Health and Progress Foundation, Ministry of Health, Andalusian Government.

Supplementary material

13277_2014_2668_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 34 kb)

References

  1. 1.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139(7):1315–26.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10(24):8152–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(21):7004–10.CrossRefGoogle Scholar
  6. 6.
    Rack B. Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk of relapse. J Clin Oncol. 2010;28:a1003.CrossRefGoogle Scholar
  7. 7.
    Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 13(7):688–95.Google Scholar
  8. 8.
    Rack BK SC, Andergassen U, Schneeweiss A, Zwingers T, Lichtenegger W, Beckmann M, et al. Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: the SUCCESS trial (abstract). J Clin Oncol. 2010;28(15 Suppl):a1300.Google Scholar
  9. 9.
    Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res. 16(9):2634–45.Google Scholar
  10. 10.
    Nadal R, Fernandez A, Sanchez-Rovira P, Salido M, Rodriguez M, Garcia-Puche JL, et al. Biomarkers characterization of circulating tumour cells in breast cancer patients. Breast Cancer Res. 14(3):R71.Google Scholar
  11. 11.
    Maciejewski JP, Tiu RV, O’Keefe C. Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies. Br J Haematol. 2009;146(5):479–88.CrossRefPubMedGoogle Scholar
  12. 12.
    Ching HC, Naidu R, Seong MK, Har YC, Taib NA. Integrated analysis of copy number and loss of heterozygosity in primary breast carcinomas using high-density SNP array. Int J Oncol. 39(3):621–33.Google Scholar
  13. 13.
    Fang M, Toher J, Morgan M, Davison J, Tannenbaum S, Claffey K. Genomic differences between estrogen receptor (ER)-positive and ER-negative human breast carcinoma identified by single nucleotide polymorphism array comparative genome hybridization analysis. Cancer. 117(10):2024–34.Google Scholar
  14. 14.
    Gonzalez-Angulo AM, Chen H, Karuturi MS, Chavez-Macgregor M, Tsavachidis S, Meric-Bernstam F, et al. Frequency of mesenchymal-epithelial transition factor gene (MET) and the catalytic subunit of phosphoinositide-3-kinase (PIK3CA) copy number elevation and correlation with outcome in patients with early stage breast cancer. Cancer.Google Scholar
  15. 15.
    Liao DJ, Dickson RB. c-Myc in breast cancer. Endocr Relat Cancer. 2000;7(3):143–64.CrossRefPubMedGoogle Scholar
  16. 16.
    Deming SL, Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000;83(12):1688–95.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Perez EA, Jenkins RB, Dueck AC, Wiktor AE, Bedroske PP, Anderson SK, et al. C-MYC alterations and association with patient outcome in early-stage HER2-positive breast cancer from the north central cancer treatment group N9831 adjuvant trastuzumab trial. J Clin Oncol. 29(6):651–9.Google Scholar
  18. 18.
    Yasojima H, Shimomura A, Naoi Y, Kishi K, Baba Y, Shimazu K, et al. Association between c-myc amplification and pathological complete response to neoadjuvant chemotherapy in breast cancer. Eur J Cancer. 47(12):1779–88.Google Scholar
  19. 19.
    Singhi AD, Cimino-Mathews A, Jenkins RB, Lan F, Fink SR, Nassar H, et al. MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Mod Pathol. 25(3):378–87.Google Scholar
  20. 20.
    Driouch K, Champeme MH, Beuzelin M, Bieche I, Lidereau R. Classical gene amplifications in human breast cancer are not associated with distant solid metastases. Br J Cancer. 1997;76(6):784–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Leung JY, Andrechek ER, Cardiff RD, Nevins JR. Heterogeneity in MYC-induced mammary tumors contributes to escape from oncogene dependence. Oncogene. 31(20):2545–54.Google Scholar
  22. 22.
    Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M. Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F. Cancer Res. 70(9):3823–32.Google Scholar
  24. 24.
    Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN, et al. MYC regulation of a “poor-prognosis” metastatic cancer cell state. Proc Natl Acad Sci U S A.107(8):3698–703.Google Scholar
  25. 25.
    Liu H, Radisky DC, Yang D, Xu R, Radisky ES, Bissell MJ, et al. MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits. Nat Cell Biol.14(6):567–74.Google Scholar
  26. 26.
    Shiu RP, Watson PH, Dubik D. c-myc oncogene expression in estrogen-dependent and -independent breast cancer. Clin Chem. 1993;39(2):353–5.PubMedGoogle Scholar
  27. 27.
    Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell. 1986;45(4):485–95.CrossRefPubMedGoogle Scholar
  28. 28.
    Welm AL, Kim S, Welm BE, Bishop JM. MET and MYC cooperate in mammary tumorigenesis. Proc Natl Acad Sci U S A. 2005;102(12):4324–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leversha MA, Han J, Asgari Z, Danila DC, Lin O, Gonzalez-Espinoza R, et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin Cancer Res. 2009;15(6):2091–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D, et al. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res. 2002;8(7):2073–84.PubMedGoogle Scholar
  31. 31.
    Dago AE, Stepansky A, Carlsson A, Luttgen M, Kendall J, Baslan T, et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One. 9(8):e101777.Google Scholar
  32. 32.
    Gaforio JJ, Serrano MJ, Sanchez-Rovira P, Sirvent A, Delgado-Rodriguez M, Campos M, et al. Detection of breast cancer cells in the peripheral blood is positively correlated with estrogen-receptor status and predicts for poor prognosis. Int J Cancer J Int Cancer. 2003;107(6):984–90.CrossRefGoogle Scholar
  33. 33.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 28(16):2784–95.Google Scholar
  34. 34.
    Sauter G, Lee J, Bartlett JM, Slamon DJ, Press MF. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27(8):1323–33.CrossRefPubMedGoogle Scholar
  35. 35.
    McIntyre A, Summersgill B, Jafer O, Rodriguez S, Zafarana G, Oosterhuis JW, et al. Defining minimum genomic regions of imbalance involved in testicular germ cell tumors of adolescents and adults through genome wide microarray analysis of cDNA clones. Oncogene. 2004;23(56):9142–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Leary RJ, Lin JC, Cummins J, Boca S, Wood LD, Parsons DW, et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A. 2008;105(42):16224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de Oliveira MM, de Oliveira SF, Lima RS, de Andrade Urban C, Cavalli LR, de Souza Fonseca Ribeiro EM, et al. Differential loss of heterozygosity profile on chromosome 3p in ductal and lobular breast carcinomas. Hum Pathol.Google Scholar
  39. 39.
    Maitra A, Wistuba II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, et al. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol. 2001;159(1):119–30.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Comprehensive molecular portraits of human breast tumours. Nature. 490(7418):61–70.Google Scholar
  41. 41.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 486(7403):346–52.Google Scholar
  42. 42.
    Wolfer A, Ramaswamy S. MYC and metastasis. Cancer Res. 71(6):2034–7.Google Scholar
  43. 43.
    Planas-Silva MD, Bruggeman RD, Grenko RT, Smith JS. Overexpression of c-Myc and Bcl-2 during progression and distant metastasis of hormone-treated breast cancer. Exp Mol Pathol. 2007;82(1):85–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Watson PH, Safneck JR, Le K, Dubik D, Shiu RP. Relationship of c-myc amplification to progression of breast cancer from in situ to invasive tumor and lymph node metastasis. J Natl Cancer Inst. 1993;85(11):902–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4(6):448–56.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • R. Nadal
    • 1
    • 2
  • M. Salido
    • 3
  • L. Nonell
    • 4
  • M. Rodríguez-Rivera
    • 3
  • E. Puigdecanet
    • 4
  • J. L. Garcia-Puche
    • 5
  • M. Macià
    • 6
  • J. M. Corominas
    • 3
  • M. J. Serrano
    • 5
    • 7
  • J. A. Lorente
    • 5
    • 7
  • F. Solé
    • 1
    • 2
  1. 1.Institut de Recerca Contra la Leucèmia Josep CarrerasBadalonaSpain
  2. 2.Departament de MedicinaUniversitat Autónoma de BarcelonaBarcelonaSpain
  3. 3.Molecular Cytogenetic LaboratoryPathology Department, Parc de Salut Mar-Hospital del Mar- IMIM-GRETNHEBarcelonaSpain
  4. 4.Servei d’Anàlisi de MicroarraysIMIM (Institut de Recerca Hospital del Mar)BarcelonaSpain
  5. 5.GENYOCentre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government PTS GranadaGranadaSpain
  6. 6.Oncology DepartmentHospital del Mar-IMASBarcelonaSpain
  7. 7.Laboratory of Genetic Identification-UGR, Department of Legal MedicineUniversity of GranadaGranadaSpain

Personalised recommendations