Tumor Biology

, Volume 36, Issue 1, pp 345–352 | Cite as

In vivo post-contrast 1H-MRS evaluation of malignant and benign breast lesions: a meta-analysis

Research Article

Abstract

The aim of this study is to perform a meta-analysis to evaluate the diagnostic performance of the in vivo post-contrast proton magnetic resonance spectroscopy (MRS) for benign/malignant discrimination of focal breast lesions. Sixteen studies with a total of 661 malignant breast lesions and 388 benign breast lesions were included. The pooled sensitivity and specificity of post-contrast 1H-MRS were 74 % (95 % confidence interval (CI) 70–77 %) and 78 % (95 % CI 73–82 %), respectively. The positive likelihood ratio (PLR) and the negative likelihood ratio (NLR) were 4.00 (95 % CI 2.74–5.84) and 0.25 (95 % CI 0.17–0.37), respectively. From the fitted summary receiver operating characteristics curve (SROC), the AUC and Q* index were 0.89 and 0.83. Publication bias was present (t = 2.43, P = 0.029). Meta-regression analysis suggested that neither threshold effect nor evaluated covariates including method of choline analysis, strength of field, pulse sequence, repetition time (TR), and time interval were sources of heterogeneity (all P values >0.05). In vivo post-contrast 1H-MRS was useful for differentiation between malignant and benign focal breast lesions. However, pooled diagnostic measures might be overestimated. The standardization of the acquisition protocol as well as the post-processing method for post-contrast proton MRS need to be established for the future study.

Keywords

Meta-analysis Magnetic resonance spectroscopy Breast cancer 

Notes

Acknowledgments

This research was partially supported by the National Natural Science Foundation of China (No. 61172034), the Science Foundation of Guangdong Province for Dr. Startup Project (No. S2012040006618), and the Science and Technology Program of Guangzhou, China (No.2014J4100160).

Conflicts of interest

None

References

  1. 1.
    Bartella L, Huang W. Proton (1H) MR spectroscopy of the breast. Radiographics. 2007;27 Suppl 1:S241–52.Google Scholar
  2. 2.
    Cen D, Xu L. Differential diagnosis between malignant and benign breast lesions using single-voxel proton MRS: a meta-analysis. J Cancer Res Clin Oncol. 2014;140(6):993–1001. doi: 10.1007/s00432-014-1605-7.
  3. 3.
    Coleman MP, Quaresma M, Berrino F, Lutz JM, De Angelis R, Capocaccia R, Baili P, Rachet B, Gatta G, Hakulinen T, Micheli A, Sant M, Weir HK, Elwood JM, Tsukuma H, Koifman S, GA ES, Francisci S, Santaquilani M, Verdecchia A, Storm HH, Young JL, Group CW. Cancer survival in five continents: a worldwide population-based study (CONCORD). Lancet Oncol. 2008;730–56. doi: 10.1016/S1470-2045(08)70179-7.
  4. 4.
    Lacey Jr JV, Kreimer AR, Buys SS, Marcus PM, Chang SC, Leitzmann MF, et al. Ovarian Cancer Screening Trial Project T: breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer. 2009;9:84.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gruber S, Debski BK, Pinker K, Chmelik M, Grabner G, Helbich T, et al. Three-dimensional proton MR spectroscopic imaging at 3 T for the differentiation of benign and malignant breast lesions. Radiology. 2011;261:752–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Vassiou K, Tsougos I, Kousi E, Vlychou M, Athanasiou E, Theodorou K, Arvanitis DL, Fezoulidis IV. Application value of 3T 1H-magnetic resonance spectroscopy in diagnosing breast tumors. Acta Radiol. 2013;54(4):380–388.Google Scholar
  7. 7.
    Jacobs MA, Barker PB, Bottomley PA, Bhujwalla Z, Bluemke DA. Proton magnetic resonance spectroscopic imaging of human breast cancer: a preliminary study. J Magn Reson Imaging JMRI. 2004;19:68–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Lu H, Liu PF, Bao RX, Sun F. Evaluation of spectral selected press sequence in breast lesion characterization. Chin Med Sci J. 2006;21:265–9.PubMedGoogle Scholar
  9. 9.
    Su MY, Baik HM, Yu HJ, Chen JH, Mehta RS, Nalcioglu O. Comparison of choline and pharmacokinetic parameters in breast cancer measured by MR spectroscopic imaging and dynamic contrast enhanced MRI. Technol Cancer Res Treat. 2006;5:401–10.PubMedGoogle Scholar
  10. 10.
    Baek HM. Diagnostic value of breast proton magnetic resonance spectroscopy at 1.5T in different histopathological types. ScientificWorldJournal. 2012;2012:508295.Google Scholar
  11. 11.
    Bartella L, Morris EA, Dershaw DD, Liberman L, Thakur SB, Moskowitz C, et al. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology. 2006;239:686–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Basara I, Orguc S, Coskun T. Single voxel in vivo proton magnetic resonance spectroscopy of breast lesions: experience in 77 cases. Diagn Interv Radiol. 2013;19:221–6.PubMedGoogle Scholar
  13. 13.
    Huang W, Fisher PR, Dulaimy K, Tudorica LA, O’Hea B, Button TM. Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology. 2004;232:585–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Mizukoshi W, Kozawa E, Inoue K, Saito N, Nishi N, Saeki T, et al. (1)H MR spectroscopy with external reference solution at 1.5 T for differentiating malignant and benign breast lesions: comparison using qualitative and quantitative approaches. Eur Radiol. 2013;23:75–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Suppiah S, Rahmat K, Mohd-Shah MN, Azlan CA, Tan LK, Aziz YF, et al. Improved diagnostic accuracy in differentiating malignant and benign lesions using single-voxel proton MRS of the breast at 3 T MRI. Clin Radiol. 2013;68:e502–10.CrossRefPubMedGoogle Scholar
  16. 16.
    Tozaki M, Fukuma E. 1H MR spectroscopy and diffusion-weighted imaging of the breast: are they useful tools for characterizing breast lesions before biopsy? AJR Am J Roentgenol. 2009;193:840–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Tse GM, Cheung HS, Pang LM, Chu WC, Law BK, Kung FY, et al. Characterization of lesions of the breast with proton MR spectroscopy: comparison of carcinomas, benign lesions, and phyllodes tumors. AJR Am J Roentgenol. 2003;181:1267–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Kousi E, Tsougos I, Vasiou K, Theodorou K, Poultsidi A, Fezoulidis I, et al. Magnetic resonance spectroscopy of the breast at 3 T: pre- and post-contrast evaluation for breast lesion characterization. ScientificWorldJournal. 2012;2012:754380.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Roebuck JR, Cecil KM, Schnall MD, Lenkinski RE. Human breast lesions: characterization with proton MR spectroscopy. Radiology. 1998;209:269–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Sardanelli F, Fausto A, Di Leo G, de Nijs R, Vorbuchner M, Podo F. In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol. 2009;192:1608–17.CrossRefPubMedGoogle Scholar
  21. 21.
    Yeung DK, Cheung HS, Tse GM. Human breast lesions: characterization with contrast-enhanced in vivo proton MR spectroscopy—initial results. Radiology. 2001;220:40–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Smith JK, Kwock L, Castillo M. Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol. 2000;21:1084–9.PubMedGoogle Scholar
  23. 23.
    Xu L, Huang Y, Liu X, Liu B. Effects of contrast agent and outer volume saturation bands on water suppression and shimming of hepatic single-volume proton MR spectroscopy at 3.0T. ScientificWorldJournal. 2012;2012:804–698.Google Scholar
  24. 24.
    Lenkinski RE, Wang X, Elian M, Goldberg SN. Interaction of gadolinium-based MR contrast agents with choline: implications for MR spectroscopy (MRS) of the breast. Magn Reson Med. 2009;61:1286–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Battal B, Bozkurt Y, Hamcan S, Akgun V. Re: Improved diagnostic accuracy in differentiating malignant and benign lesions using single-voxel proton MRS of the breast at 3 T MRI. Clin Radiol. 2014;69:e108–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Battal B, Akgun V, Karaman B. Value of 3 T 1H-magnetic resonance spectroscopy in the differentiation of benign and malignant breast tumors. Acta Radiol. 2014;55:416–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Ho KM. Forest and funnel plots illustrated the calibration of a prognostic model: a descriptive study. J Clin Epidemiol. 2007;60:746–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Souza JP, Pileggi C, Cecatti JG. Assessment of funnel plot asymmetry and publication bias in reproductive health meta-analyses: an analytic survey. Reprod Health. 2007;4:3.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hamilton G, Middleton MS, Bydder M, Yokoo T, Schwimmer JB, Kono Y, et al. Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging. 2009;30:145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cuzick J. Forest plots and the interpretation of subgroups. Lancet. 2005;365:1308.CrossRefPubMedGoogle Scholar
  32. 32.
    Yeh J, D’Amico F. Forest plots: data summaries at a glance. J Fam Pract. 2004;53:1007.PubMedGoogle Scholar
  33. 33.
    Baltzer PA, Dietzel M. Breast lesions: diagnosis by using proton MR spectroscopy at 1.5 and 3.0 T—systematic review and meta-analysis. Radiology. 2013;267:735–46.CrossRefPubMedGoogle Scholar
  34. 34.
    Xu L, Liang CH, Huang B, Tan SH, Cen D, Cui YH, et al. Effects of contrast agent on water suppression and shimming of kidney single-volume proton MR spectroscopy at 3.0T. Acad Radiol. 2010;17:1462–7.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Medical ImagingGuangzhou Nansha Central Hospital, Guangzhou First People’s Hospital, Guangzhou Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of RadiologyGuangdong Provincial Traditional Chinese Medicine Hospital & Postdoctoral Mobile Research Station of Guangzhou University of Traditional Chinese MedicineGuangzhouPeople’s Republic of China
  3. 3.MRI LabBiomedical Engineering School of the Southern Medical UniversityGuangzhou CityChina
  4. 4.Bernard and Irene Schwartz Center for Biomedical ImagingNew York University School of MedicineNew YorkUSA

Personalised recommendations