Tumor Biology

, Volume 36, Issue 3, pp 1487–1491 | Cite as

Aberrant promoter hypermethylation of p16 gene in endometrial carcinoma

  • Zhuo-ying Hu
  • Liang-dan Tang
  • Qin Zhou
  • Lin Xiao
  • Yi Cao
Research Article

Abstract

Previous studies demonstrated that the loss of function of the p16INK4A gene is mainly caused by the hypermethylation of p16 gene promoter; however, whether or not it is associated with the incidence of endometrial carcinoma (EC) remains unclear. In the current study, we conducted a meta-analysis to investigate the effects of p16 gene promoter hypermethylation on the incidence of EC. Detailed research publications were searched from Embase, PubMed, and ISI Web of Knowledge for composition in English or Chinese. The pooled data were collected and analyzed by Review Manager 5.2. Odds ratios (ORs) were calculated and summarized respectively. Six eligible studies, including 261 patients were selected and analyzed. The pooled OR was 0.42, test for overall effect, Z = 10.19, P < 0.0001, indicating that p16 gene promoter hypermethylation was significantly correlated with the EC patients. The results of our study strongly suggest that p16 gene promoter hypermethylation is correlated with an increased risk of EC. P16 gene promoter hypermethylation plays a critical role in endometrial carcinogenesis.

Keywords

p16 Hypermethylation Endometrial carcinoma (EC) Therapy Meta-analysis Odds ratio 

Notes

Conflicts of interest

None

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang Y, Liu Z, Yu X, Zhang X, Lu S, et al. The association between metabolic abnormality and endometrial cancer: a large case–control study in China. Gynecol Oncol. 2010;117:41–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, et al. Endometrial cancer. Lancet. 2005;366:491–505.CrossRefPubMedGoogle Scholar
  4. 4.
    Yeramian A, Moreno-Bueno G, Dolcet X, Catasus L, Abal M, et al. Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. 2013;32:403–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Campan M, Weisenberger DJ, Laird PW. DNA methylation profiles of female steroid hormone-driven human malignancies. Curr Top Microbiol Immunol. 2006;310:141–78.PubMedGoogle Scholar
  6. 6.
    Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62:111–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, et al. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci U S A. 1994;91:11045–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sherr CJ. Cancer cell cycles. Science. 1996;274:1672–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Nakashima R, Fujita M, Enomoto T, Haba T, Yoshino K, et al. Alteration of p16 and p15 genes in human uterine tumours. Br J Cancer. 1999;80:458–67.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hatta Y, Hirama T, Takeuchi S, Lee E, Pham E, et al. Alterations of the p16 (MTS1) gene in testicular, ovarian, and endometrial malignancies. J Urol. 1995;154:1954–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Milde-Langosch K, Riethdorf L, Bamberger AM, Loning T. P16/MTS1 and pRB expression in endometrial carcinomas. Virchows Arch. 1999;434:23–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Moher D, Liberati A, Tetzlaff J, Altman DG. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89:873–80.PubMedGoogle Scholar
  14. 14.
    Bero L, Rennie D. The Cochrane Collaboration. Preparing, maintaining, and disseminating systematic reviews of the effects of health care. JAMA. 1995;274:1935–8.CrossRefPubMedGoogle Scholar
  15. 15.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.CrossRefPubMedGoogle Scholar
  16. 16.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    DerSimonian R. Meta-analysis in the design and monitoring of clinical trials. Stat Med. 1996;15:1237–48. discussion 1249–1252.CrossRefPubMedGoogle Scholar
  18. 18.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang QY, Yi DQ, Zhou L, Zhang DH, Zhou TM. Status and significance of CpG island methylator phenotype in endometrial cancer. Gynecol Obstet Investig. 2011;72:183–91.CrossRefGoogle Scholar
  20. 20.
    Di Domenico M, Santoro A, Ricciardi C, Iaccarino M, Iaccarino S, et al. Epigenetic fingerprint in endometrial carcinogenesis: the hypothesis of a uterine field cancerization. Cancer Biol Ther. 2011;12:447–57.CrossRefPubMedGoogle Scholar
  21. 21.
    Guida M, Sanguedolce F, Bufo P, Di Spiezio Sardo A, Bifulco G, et al. Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur J Gynaecol Oncol. 2009;30:267–70.PubMedGoogle Scholar
  22. 22.
    Leal Rojas P, Anabalon Rodriguez L, Garcia Munoz P, Tapia Escalona O, Guzman Gonzalez P, et al. [Promoter hypermethylation gene patterns in gynecological tumors]. Med Clin (Barc). 2009;132:371–6.CrossRefGoogle Scholar
  23. 23.
    Ignatov A, Bischoff J, Schwarzenau C, Krebs T, Kuester D, et al. P16 alterations increase the metastatic potential of endometrial carcinoma. Gynecol Oncol. 2008;111:365–71.CrossRefPubMedGoogle Scholar
  24. 24.
    Arafa M, Kridelka F, Mathias V, Vanbellinghen JF, Renard I, et al. High frequency of RASSF1A and RARb2 gene promoter methylation in morphologically normal endometrium adjacent to endometrioid adenocarcinoma. Histopathology. 2008;53:525–32.PubMedGoogle Scholar
  25. 25.
    Suehiro Y, Okada T, Anno K, Okayama N, Ueno K, et al. Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation. Clin Cancer Res. 2008;14:3354–61.CrossRefPubMedGoogle Scholar
  26. 26.
    Banno K, Yanokura M, Susumu N, Kawaguchi M, Hirao N, et al. Relationship of the aberrant DNA hypermethylation of cancer-related genes with carcinogenesis of endometrial cancer. Oncol Rep. 2006;16:1189–96.PubMedGoogle Scholar
  27. 27.
    Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer. 2006;6:212.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 2006;12:3329–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Yanokura M, Banno K, Susumu N, Kawaguchi M, Kuwabara Y, et al. Hypermethylation in the p16 promoter region in the carcinogenesis of endometrial cancer in Japanese patients. Anticancer Res. 2006;26:851–6.PubMedGoogle Scholar
  30. 30.
    Kang S, Kim JW, Kang GH, Lee S, Park NH, et al. Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer. 2006;118:2168–71.CrossRefPubMedGoogle Scholar
  31. 31.
    Salvesen HB, Kumar R, Stefansson I, Angelini S, MacDonald N, et al. Low frequency of BRAF and CDKN2A mutations in endometrial cancer. Int J Cancer. 2005;115:930–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Yuan JR, Fu SB, Fu H, Li P. [Significance of methylation and abnormal expression of p16 gene in endometrial carcinoma]. Yi Chuan Xue Bao. 2004;31:454–9.PubMedGoogle Scholar
  33. 33.
    Semczuk A, Boltze C, Marzec B, Szczygielska A, Roessner A, et al. p16INK4A alterations are accompanied by aberrant protein immunostaining in endometrial carcinomas. J Cancer Res Clin Oncol. 2003;129:589–96.CrossRefPubMedGoogle Scholar
  34. 34.
    Whitcomb BP, Mutch DG, Herzog TJ, Rader JS, Gibb RK, et al. Frequent HOXA11 and THBS2 promoter methylation, and a methylator phenotype in endometrial adenocarcinoma. Clin Cancer Res. 2003;9:2277–87.PubMedGoogle Scholar
  35. 35.
    Martini M, Ciccarone M, Garganese G, Maggiore C, Evangelista A, et al. Possible involvement of hMLH1, p16(INK4a) and PTEN in the malignant transformation of endometriosis. Int J Cancer. 2002;102:398–406.CrossRefPubMedGoogle Scholar
  36. 36.
    Chao H, Sun J, Lu S. [Methylation and expression of the p16 gene in endometrial carcinoma]. Zhonghua Zhong Liu Za Zhi. 2000;22:228–31.PubMedGoogle Scholar
  37. 37.
    Tsuda H, Yamamoto K, Inoue T, Uchiyama I, Umesaki N. The role of p16-cyclin d/CDK-pRb pathway in the tumorigenesis of endometrioid-type endometrial carcinoma. Br J Cancer. 2000;82:675–82.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Salvesen HB, Das S, Akslen LA. Loss of nuclear p16 protein expression is not associated with promoter methylation but defines a subgroup of aggressive endometrial carcinomas with poor prognosis. Clin Cancer Res. 2000;6:153–9.PubMedGoogle Scholar
  39. 39.
    Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, et al. Methylation of p16INK4A in primary gynecologic malignancy. Cancer Lett. 1999;136:231–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Chao H, Sun J, Lun S. Methylation and expression of the p16 gene in endometrial carcinoma. Chin J Oncol. 2000;22:228–31.Google Scholar
  41. 41.
    Zhou L, Huang P, Zhu A. Relationships between methylation of p16 gene, Her-2 expression and serum ca125 level with clinicopathological characteristics in endometrial carcinoma. Carcinog Teratog Mutagen. 2009;21(2):33–7.Google Scholar
  42. 42.
    Cota GF, de Sousa MR, Fereguetti TO, Rabello A. Efficacy of anti-leishmania therapy in visceral leishmaniasis among HIV infected patients: a systematic review with indirect comparison. PLoS Negl Trop Dis. 2013;7:e2195.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Formeister EJ, Tsuchiya M, Fujii H, Shpyleva S, Pogribny IP, et al. Comparative analysis of promoter methylation and gene expression endpoints between tumorous and non-tumorous tissues from HCV-positive patients with hepatocellular carcinoma. Mutat Res. 2010;692:26–33.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu WJ, Wang L, Wang JP, Li JQ, Zhang CQ, et al. [Correlations of CpG island methylator phenotype and OPCML gene methylation to carcinogenesis of hepatocellular carcinoma]. Ai Zheng. 2006;25:696–700.PubMedGoogle Scholar
  45. 45.
    Harden SV, Tokumaru Y, Westra WH, Goodman S, Ahrendt SA, et al. Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res. 2003;9:1370–5.PubMedGoogle Scholar
  46. 46.
    Kim YT, Lee SH, Sung SW, Kim JH. Can aberrant promoter hypermethylation of CpG islands predict the clinical outcome of non-small cell lung cancer after curative resection? Ann Thorac Surg. 2005;79:1180–8. discussion 1180–1188.CrossRefPubMedGoogle Scholar
  47. 47.
    Xu Z, Taylor JA. Genome-wide age-related DNA methylation changes in blood and other tissues relate to histone modification, expression and cancer. Carcinogenesis. 2014;35:356–64.CrossRefPubMedGoogle Scholar
  48. 48.
    Yan L, Ma C, Wang D, Hu Q, Qin M, et al. OSAT: a tool for sample-to-batch allocations in genomics experiments. BMC Genomics. 2012;13:689.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chao H, Sun J, Lu S. [Growth inhibition effect of 5-aza-CdR on endometrial carcinoma xenografted in nude mice by p16 gene demethylation]. Zhonghua Fu Chan Ke Za Zhi. 2000;35:229–32.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhuo-ying Hu
    • 1
  • Liang-dan Tang
    • 1
  • Qin Zhou
    • 1
  • Lin Xiao
    • 1
  • Yi Cao
    • 1
  1. 1.Department of Obstetrics and Gynecology, The First Affiliated HospitalChongqing Medical UniversityChongqingChina

Personalised recommendations