Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway

Abstract

Thymoquinone (TQ) is the primary bioactive component of Nigella sativa Linn seed oil and used as anti-inflammatory, anti-oxidant, and anti-neoplastic agent. Previous studies have shown that TQ exhibits inhibitory effects on multiple cancers. However, the detailed antineoplastic effects and its molecular mechanisms of TQ on lung cancer are not entirely elucidated yet. In the present study, we aimed to investigate the effects of TQ on cell proliferation, migration, and invasion as well as its underlying anti-metastatic mechanisms in A549 cells. Lung cancer cell line A549 cells were treated with different concentration of TQ for different period of time, and the growth-inhibitory effects of TQ was measured by MTT and cell count assays; cell cycle was determined by flow cytometry; wound healing and transwell assays were used to assess the cell migration and invasion activities; Western blot and real-time quantitative RT-PCR were used to determine the expression of proliferation and invasion associated genes as well as MAPKs pathway molecules; gelatinase activity was estimated using gelatin zymography assay. The results show that TQ played a role in inhibiting the proliferation, migration, and invasion of A549 lung cancer cells, it also inhibited the expression level of PCNA, cyclin D1, MMP2, and MMP9 mRNA and protein in a dose- and time-dependent manner especially at 10, 20, 40 μmol/L concentrations. The cell cycle inhibitor P16 expression and the gelatinase activities of MMP2 and MMP9 were also inhibited by TQ dramatically. TQ reduced phosphorylation of ERK1/2; however, the proliferation and invasion inhibitory effects of TQ on A549 cells were neutralized by ERK1/2 inhibitor PD98059. In conclusion, our study confirmed that TQ could inhibit A549 cell proliferation, migration, and invasion through ERK1/2 pathway, as proposed the therapeutic potential of TQ as an anti-metastatic agent in human lung cancer treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

TQ:

Thymoquinone

siRNA:

Small interfering RNA

NSCLC:

Nonsmall-cell lung cancer

SCLC:

Small cell lung cancer

TIMP:

Tissue inhibitor of metalloproteinase

MMP:

Matrix metalloproteinase

ECM:

Extracellular matrix

FBS:

Fetal bovine serum

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. 1.

    Smith RA, Cokkinides V, Brawley OW. Cancer screening in the United States, 2009: a review of current American Cancer Society guidelines and issues in cancer screening. CA Cancer J Clin. 2009;59:27–41.

    Article  PubMed  Google Scholar 

  2. 2.

    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.

    Article  PubMed  Google Scholar 

  3. 3.

    Chan DC, Earle KA, Zhao TL, Helfrich B, Zeng C, Baron A, et al. Exisulind in combination with docetaxel inhibits growth and metastasis of human lung cancer and prolongs survival in athymic nude rats with orthotopic lung tumors. Clin Cancer Res. 2002;8:904–12.

    CAS  PubMed  Google Scholar 

  4. 4.

    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Woessner Jr JF. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991;5:2145–54.

    CAS  PubMed  Google Scholar 

  6. 6.

    McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore! Curr Opin Cell Biol. 2001;13(5):534–40.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Spinale FG. Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev. 2007;87:1285–342.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano. 2012;6:3491–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, et al. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci U S A. 2010;107:4311–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kajanne R, Miettinen P, Mehlem A, Leivonen SK, Birrer M, Foschi M, et al. EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. J Cell Physiol. 2007;212(2):489–97.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13:781–92.

    CAS  PubMed  Google Scholar 

  12. 12.

    Abi Saab WF, Brown MS, Chadee DN. MLK4β functions as a negative regulator of MAPK signaling and cell invasion. Oncogenesis. 2012;1:e6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Hawsawi ZA, Ali BA, Bamosa AO. Effect of Nigella sativa (black seed) and thymoquinone on blood glucose in albino rats. Ann Saudi Med. 2001;21:242–4.

    CAS  PubMed  Google Scholar 

  15. 15.

    Trang NT, Wanner MJ, Phuong le VN, Koomen GJ, Dung NX. Thymoquinone from Eupatorium ayapana. Planta Med. 1993;59:99.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hosseinzadeh H, Parvardeh S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine. 2004;11:56–64.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Woo CC, Kumar AP, Sethi G, Tan KH. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol. 2012;83:443–51.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J Exp Clin Cancer Res. 2010;29:87.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Li F, Rajendran P, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol. 2010;161:541–54.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hua H, Li M, Luo T, Yin Y, Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci. 2011;68:3853–68.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Arafa e-SA, Zhu Q, Shah ZI, Wani G, Barakat BM, Racoma I. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res. 2011;706:28–35.

    CAS  Article  Google Scholar 

  22. 22.

    Ivankovic S, Stojkovic R, Jukic M, Milos M, Milos M, Jurin M. The antitumor activity of thymoquinone and thymohydroquinone in vitro and in vivo. Exp Oncol. 2006;28:220–4.

    CAS  PubMed  Google Scholar 

  23. 23.

    Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther. 2008;7:1789–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Attoub S, Sperandio O, Raza H, Arafat K, Al-Salam S, Al Sultan MA, et al. Thymoquinone as an anticancer agent: evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam Clin Pharmacol. 2013;27:557–69.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Banerjee S, Azmi AS, Padhye S, Singh MW, Baruah JB, Philip PA, et al. Structure-activity studies on therapeutic potential of thymoquinone analogs in pancreatic cancer. Pharm Res. 2010;27:1146–58.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147:992–1009.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Sahai E. Mechanisms of cancer cell invasion. Curr Opin Genet Dev. 2005;15:87–96.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst. 1997;89:1260–70.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    González-Avila G, Iturria C, Vadillo F, Terán L, Selman M, Pérez-Tamayo R. 72-kD (MMP-2) and 92-kD (MMP-9) type IV collagenase production and activity in different histologic types of lung cancer cells. Pathobiology. 1998;66:5–16.

    Article  PubMed  Google Scholar 

  30. 30.

    Ylisirniö S, Höyhtyä M, Turpeenniemi-Hujanen T. Serum matrix metalloproteinases-2, -9 and tissue inhibitors of metalloproteinases-1, -2 in lung cancer–TIMP-1 as a prognostic marker. Anticancer Res. 2000;20:1311–6.

    PubMed  Google Scholar 

  31. 31.

    Kim J, Hwan KS. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells. PLoS One. 2013;8:e74342.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Chu SC, Chiou HL, Chen PN, Yang SF, Hsieh YS. Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Mol Carcinog. 2004;40:143–9.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kolli-Bouhafs K, Boukhari A, Abusnina A, Velot E, Gies JP, Lugnier C, et al. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs. 2012;30:2121–31.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Chen WP, Tang JL, Bao JP, Wu LD. Thymoquinone inhibits matrix metalloproteinase expression in rabbit chondrocytes and cartilage in experimental osteoarthritis. Exp Biol Med (Maywood). 2010;235:1425–31.

    CAS  Article  Google Scholar 

  35. 35.

    Amith SR, Jayanth P, Finlay T, Franchuk S, Gilmour A, Abdulkhalek S, et al. Detection of Neu1 sialidase activity in regulating Toll-like receptor activation. J Vis Exp. 2010; 2142.

  36. 36.

    Tang SW, Yang TC, Lin WC, Chang WH, Wang CC, Lai MK, et al. Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells. Carcinogenesis. 2011;32:138–45.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Murthy SR, Dupart E, Al-Sweel N, Chen A, Cawley NX, Loh YP. Carboxypeptidase E promotes cancer cell survival, but inhibits migration and invasion. Cancer Lett. 2013;341:204–13.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tao X, Hill KS, Gaziova I, Sastry SK, Qui S, Szaniszlo P, et al. Silencing Met receptor tyrosine kinase signaling decreased oral tumor growth and increased survival of nude mice. Oral Oncol. 2014;50:104–12.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Lin CW, Chen PN, Chen MK, Yang WE, Tang CH, Yang SF, et al. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One. 2013;81:e80883.

    Article  Google Scholar 

  40. 40.

    Lee SH, Jaganath IB, Manikam R, Sekaran SD. Inhibition of Raf-MEK-ERK and hypoxia pathways by phyllanthus prevents metastasis in human lung (A549) cancer cell line. BMC Complement Altern Med. 2013;13:271.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest

None

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xi-xin Yan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Kuang, Xr., Lv, Pt. et al. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumor Biol. 36, 259–269 (2015). https://doi.org/10.1007/s13277-014-2628-z

Download citation

Keywords

  • Nonsmall-cell lung cancer
  • Thymoquinone
  • Proliferation
  • Invasion
  • Signal transduction pathway