Tumor Biology

, Volume 36, Issue 1, pp 437–446 | Cite as

The expression profiles of microRNAs in Kaposi’s sarcoma

  • Xiu-Juan Wu
  • Xiong-Ming Pu
  • Zong-Feng Zhao
  • Ya-Nan Zhao
  • Xiao-Jing Kang
  • Wei-Dong Wu
  • Yun-Min Zou
  • Cao-Ying Wu
  • Yuan-Yuan Qu
  • De-Zhi Zhang
  • Yan-Yan Feng
  • Jian-Yong Liu
Research Article


Kaposi’s sarcoma (KS) is a multicentric angioproliferative tumor of mesenchymal origin. The molecular and biologic aspects of KS are not fully understood. MicroRNAs are non-protein-coding small RNAs in the size range 19–25 nucleotides (nt) that play important roles in biological processes, including cellular differentiation, proliferation, and death. We performed a miRNA microarray analysis by detecting six paired KS and matched adjacent healthy tissues using the 7th generation of miRCURYTM LNA Array (v.18.0) (Exiqon) containing 3100 capture probes. We selected 10 significant differentially expressed miRNAs, which were confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in 18 paired KS and matched adjacent healthy tissue specimens. We also investigated the associations between clinical features and miRNA expression. Among the 3100 human miRNA probes in the microarrays, we identified 170 differentially expressed miRNAs (69 upregulated and 101 downregulated miRNAs) in KS versus adjacent healthy tissues. Among the most significantly upregulated miRNAs were miR-126-3p, miR-199a-3p, miR-16-5p, and the 13 KSHV-related miRNAs. The most significantly downregulated miRNAs included miR-125b-1-3p and miR-1183. Eight upregulated miRNAs, miR-181b-5p, miR-199a-3p, miR-15a-5p, miR-126-3p, miR-1297, kshv-miR-k12-12-3p, kshv-miR-k12-1-5p, and miR-16-5p, and two downregulated miRNAs, miR-125b-1-3p and miR-1183, were confirmed by qRT-PCR in 18 paired KS samples. The qRT-PCR results for 10 miRNAs were consistent with our microarray results. The miR-125b-1-3p and miR-16-5p had statistically significant associations with HHV-8 and HIV infections in KS. The results of miRNA profiling showed that KS appears to have unique expression patterns when compared with paired adjacent healthy tissues, suggesting that deregulation of miRNAs plays an important role in the progression of KS. These differentially expressed miRNAs may provide novel diagnostic and prognostic tools.


MicroRNA Profile Expression Kaposi’s sarcoma 



This work was supported by a grant from the Natural Science Foundation of China (Grant No. 81260311) and Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2014211A059). We are most grateful to all the families who have so willingly participated in this study and made this study possible. We also acknowledge the support of the Clinical Dermatology Institute of Xinjiang Uygur Autonomous Region and National Clinical key specialty construction projects.

Conflicts of interest


Supplementary material

13277_2014_2626_MOESM1_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 14 kb)
13277_2014_2626_MOESM2_ESM.docx (18 kb)
Supplementary Table 2 (DOCX 18 kb)
13277_2014_2626_MOESM3_ESM.docx (18 kb)
Supplementary Table 3 (DOCX 18 kb)
13277_2014_2626_MOESM4_ESM.docx (413 kb)
Supplementary Figure 1 (DOCX 412 kb)
13277_2014_2626_MOESM5_ESM.docx (358 kb)
Supplementary Figure 2 (DOCX 357 kb)
13277_2014_2626_MOESM6_ESM.docx (238 kb)
Supplementary Figure 3 (DOCX 238 kb)


  1. 1.
    Zeng Y. Principles of micro-RNA production and maturation. Oncogene. 2006;25(46):6156–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25(46):6163–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.CrossRefPubMedGoogle Scholar
  4. 4.
    Farh KK-H, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005;310(5755):1817–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific microRNAs. Dev Cell. 2003;5(2):351–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Hengge UR, Ruzicka T, Tyring SK, Stuschke M, Roggendorf M, Schwartz RA, et al. Update on kaposi’s sarcoma and other hhv8 associated diseases. Part 1: epidemiology, environmental predispositions, clinical manifestations, and therapy. Lancet Infect Dis. 2002;2(5):281–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet. 2004;36(7):687–93.CrossRefPubMedGoogle Scholar
  10. 10.
    Kaposi M. Idiopathic multiple pigmented sarcoma of the skin. Arch Dermatol Syphilol. 1872;4(6):265–73.CrossRefGoogle Scholar
  11. 11.
    Kaloterakis A, Papasteriades C, Filiotou A, Economidou J, Hadjiyannis S, Stratigos J. Hla in familial and nonfamilial mediterranean Kaposi’s sarcoma in Greece. Tissue Antigens. 1995;45(2):117–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Dilnur P, Katano H, Wang ZH, Osakabe Y, Kudo M, Sata T, et al. Classic type of Kaposi’s sarcoma and human herpesvirus 8 infection in Xinjiang, China. Pathol Int. 2001;51(11):845–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Pu X-M, Wu W-D, Ju H-E. The detection of hhv-8 in the serum of Kaposi’s sarcoma before and after the therapy with interferon. J Clin Dermatol. 2004;33(2):87–8.Google Scholar
  14. 14.
    He F, Wang X, He B, Feng Z, Lu X, Zhang Y, et al. Human herpesvirus 8: serovprevalence and correlates in tumor patients from Xinjiang, China. J Med Virol. 2007;79(2):161–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang X, He B, Zhang Z, Liu T, Wang H, Li X, et al. Human herpesvirus-8 in northwestern China: epidemiology and characterization among blood donors. Virol J. 2010;7(1):1–7.CrossRefGoogle Scholar
  16. 16.
    Wu XJ, Pu XM, Kang XJ, Halifu Y, An CX, Zhang DZ, Yakeya B, Mijit J. One hundred and five kaposi sarcoma patients: A clinical study in xinjiang, northwest of china. J Eur Acad Dermatol Venereol. 2014.Google Scholar
  17. 17.
    Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in aids-associated Kaposi’s sarcoma. Science. 1994;266(5192):1865–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer. 2013;4(5):350–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gu H, Li H, Zhang L, Luan H, Huang T, Wang L, et al. Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J Neurochem. 2012;122(3):641–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative ct method. Nat Protoc. 2008;3(6):1101–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci Signal. 2007;2007(367):re1.Google Scholar
  22. 22.
    Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12.CrossRefPubMedGoogle Scholar
  23. 23.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129(7):1401–14.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ene AMC, Borze I, Guled M, Costache M, Leen G, Sajin M, et al. MicroRNA expression profiles in Kaposi’s sarcoma. Pathol Oncol Res. 2014;20(1):153–9.CrossRefGoogle Scholar
  25. 25.
    O’Hara AJ, Wang L, Dezube BJ, Harrington WJ, Damania B, Dittmer DP. Tumor suppressor microRNAs are underrepresented in primary effusion lymphoma and Kaposi sarcoma. Blood. 2009;113(23):5938–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen L, Yang Q, Kong WQ, Liu T, Liu M, Li X, et al. MicroRNA-181b targets camp responsive element binding protein 1 in gastric adenocarcinomas. IUBMB Life. 2012;64(7):628–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Nurul S, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L. Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers. Int J Mol Med. 2011;28(3):327–36.Google Scholar
  28. 28.
    Ratert N, Meyer H-A, Jung M, Mollenkopf H-J, Wagner I, Miller K, et al. Reference miRNAs for miRNAome analysis of urothelial carcinomas. PLoS One. 2012;7(6):e39309.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, et al. Mirna-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor epb41l3. Mol Cancer Res. 2011;9(7):824–33.CrossRefPubMedGoogle Scholar
  30. 30.
    He J, Jing Y, Li W, Qian X, Xu Q, Li F-S, et al. Roles and mechanism of mir-199a and mir-125b in tumor angiogenesis. PLoS One. 2013;8(2):e56647.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann J-H. MiRNAs can increase the efficiency of ex vivo platelet generation. Ann Hematol. 2012;91(11):1673–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Li X, Wang H-l, Peng X, Zhou H-l, Wang X. Mir-1297 mediates pten expression and contributes to cell progression in LSCC. Biochem Biophys Res Commun. 2012;427(9):254–60.CrossRefPubMedGoogle Scholar
  33. 33.
    Roy D, Dittmer DP. Phosphatase and tensin homolog on chromosome 10 is phosphorylated in primary effusion lymphoma and Kaposi’s sarcoma. Am J Pathol. 2011;179(4):2108–19.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Parker LH, Schmidt M, Jin S-W, Gray AM, Beis D, Pham T, et al. The endothelial-cell-derived secreted factor egfl7 regulates vascular tube formation. Nature. 2004;428(6984):754–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Meister J, Schmidt MHH. Mir-126 and mir-126*: new players in cancer. Sci World J. 2010;10(9):2090–100.CrossRefGoogle Scholar
  36. 36.
    Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, et al. The Kaposi’s sarcoma-associated herpes virus g protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1 alpha. Cancer Res. 2000;60(17):4873–80.PubMedGoogle Scholar
  37. 37.
    Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A. 2005;102(15):5570–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, et al. A viral microRNA functions as an orthologue of cellular mir-155. Nature. 2007;450(7172):1096–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, et al. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of mir-155. J Virol. 2007;81(23):12836–45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Xiu-Juan Wu
    • 1
    • 2
  • Xiong-Ming Pu
    • 1
    • 2
  • Zong-Feng Zhao
    • 3
  • Ya-Nan Zhao
    • 2
  • Xiao-Jing Kang
    • 2
  • Wei-Dong Wu
    • 3
  • Yun-Min Zou
    • 2
  • Cao-Ying Wu
    • 2
  • Yuan-Yuan Qu
    • 2
  • De-Zhi Zhang
    • 2
  • Yan-Yan Feng
    • 2
  • Jian-Yong Liu
    • 2
  1. 1.Department of Dermatology and VenereologyAnhui Medical UniversityHefeiChina
  2. 2.Department of Dermatology and VenereologyPeople’s Hospital of Xinjiang, Uygur Autonomous RegionUrumqiChina
  3. 3.Clinical Medical Research CenterPeople’s Hospital of Xinjiang, Uygur Autonomous RegionUrumqiChina

Personalised recommendations