Advertisement

Tumor Biology

, Volume 36, Issue 1, pp 205–211 | Cite as

The EGF signaling pathway influences cell migration and the secretion of metalloproteinases by myoepithelial cells in pleomorphic adenoma

  • Natalia Festugatto Navarini
  • Vera Cavalcanti de Araújo
  • Amy Louise Brown
  • Fabrício Passador-Santos
  • Isabela Fernandes de Souza
  • Marcelo Henrique Napimoga
  • Ney Soares Araújo
  • Elizabeth Ferreira Martinez
Research Article

Abstract

During tumor development, benign neoplastic cells are influenced by the expression of cytokines, growth factors, and proteases present in the tumor microenvironment. Epidermal growth factor (EGF) is the most studied growth factor and is considered important for cell proliferation and migration. Metalloproteinases (MMPs) are also involved in tumor progression. The present study aimed to analyze the proliferation, viability and migration index of pleomorphic adenoma myoepithelial cells, in addition to the secretion of MMPs with EGF supplementation. Benign myoepithelial cells were cultured with two different EGF doses (5 and 10 ng/ml), and the influence of EGF on cell proliferation and viability, using trypan blue and MTT assays, respectively, after 24, 48, and 72 h, was evaluated. To analyze cellular morphology, hematoxylin-eosin staining and indirect immunofluorescence using the anti-vimentin antibody, was performed. In vitro migration assays were performed in Transwell chambers with an 8-μm pore covered with Matrigel and supplemented with 5 or 10 ng/ml of EGF, after 96 h. After 4 days of cell culture, ELISA was performed to determine the MMP-2 and MMP-13 levels. One-way analysis of variance (ANOVA) with post hoc Tukey test was applied, with a significance level of 0.05. The results revealed that EGF influences myoepithelial cell morphology, without alteration of proliferation and viability. The migration assay showed that EGF increased the mean index from 16 % in the control group to 40 and 76 % for 5 and 10 ng/ml of EGF, respectively. ELISA revealed that when the cells were supplemented with either of the EGF doses, an increase in MMP-2 levels was observed when compared with the control group (C). This study concludes that EGF aids in the production of MMP-2, which favors the dissolution of the basement membrane, contributing to cell migration and tumor progression, hence permitting contact between the myoepithelial cells and stroma.

Keywords

Tumor microenvironment Myoepithelial cell Epidermal growth factor 

Notes

Acknowledgments

The authors wish to thank Pollyanna Tombini Montaldi and Vanessa Araújo for their excellent technical expertise and assistance and CNPq/Brazil (#471153/2013-3) and FAPESP (2011/19082-1).

Conflicts of interest

None

References

  1. 1.
    Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 2005;70:343–56.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res. 2003;284(1):31–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal. 2006;18(12):2089–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Martinez EF, Demasi AP, Miguita L, Altemani A, Araújo NS, Araújo VC. FGF-2 is overexpressed in myoepithelial cells of carcinoma ex-pleomorphic adenoma in situ structures. Oncol Rep. 2010;24(1):155–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Martinez EF, Demasi AP, Napimoga MH, Arana-Chavez VE, Altemani A, de Araújo NS, et al. In vitro influence of the extracellular matrix in myoepithelial cells stimulated by malignant conditioned medium. Oral Oncol. 2012;48(2):102–9.CrossRefPubMedGoogle Scholar
  6. 6.
    McSherry EA, Donatello S, Hopkins AM, McDonnell S. Molecular basis of invasion in breast cancer. Cell Mol Life Sci. 2007;64(24):3201–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 2009;28(1–2):113–27.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martinez EF, Napimoga MH, Montalli VA, de Araújo NS, de Araújo VC. In vitro cytokine expression in in situ-like areas of malignant neoplasia. Arch Oral Biol. 2013;58(5):552–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Yamahara M, Fujito T, Ishikawa T, Shimosato T, Yokozaki H, Yasui W, et al. Phenotypic expression of human epidermal growth factor in foetal submandibular gland and pleomorphic adenoma of salivary gland. Virchows Arch A Pathol Anat Histopathol. 1988;412(4):301–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Umeda Y, Miyazaki Y, Shiinoki H, Higashiyama S, Nakanishi Y, Hieda Y. Involvement of heparin-binding EGF-like growth factor and its processing by metalloproteinases in early epithelial morphogenesis of the submandibular gland. Dev Biol. 2001;237(1):202–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Nitta M, Kume T, Nogawa H. FGF alters epithelial competence for EGF at the initiation of branching morphogenesis of mouse submandibular gland. Dev Dyn. 2009;238(2):315–23.CrossRefPubMedGoogle Scholar
  12. 12.
    Antoniades HN, Owen AJ. Growth factors and regulation of cell growth. Annu Rev Med. 1982;33:445–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene. 2000;19(56):6550–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Harari PM. Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer. 2004;11:689–708.CrossRefPubMedGoogle Scholar
  15. 15.
    Furuse C, Miguita L, Rosa AC, Soares AB, Martinez EF, Altemani A, et al. Study of growth factors and receptors in carcinoma ex pleomorphic adenoma. J Oral Pathol Med. 2010;39(7):540–7.PubMedGoogle Scholar
  16. 16.
    Sabe H, Hashimoto S, Morishige M, Hashimoto A, Ogawa E. The EGFR-GEP100-Arf6 pathway in breast cancer: full invasiveness is not from the inside. Cell Adh Migr. 2008;2(2):71–3.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69:562–73.CrossRefPubMedGoogle Scholar
  18. 18.
    Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol. 2007;8:221–33.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Decock J, Thirkettle S, Wagstaff L, Edwards DR. Matrix metalloproteinases: protective roles in cancer. J Cell Mol Med. 2011;15(6):1254–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Huang CH, Yang WH, Chang SY, Tai SK, Tzeng CH, Kao JYK, et al. Regulation of membrane- type 4 matrix metalloproteinases by SLUG contributes to hypoxia-mediated metastasis. Neoplasia. 2009;11:1371–82.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jones JL, Shaw JA, Pringle JH, Walker RA. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol. 2003;201(4):562–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Sutinen M, Kainulainen T, Hurskainen T, Vesterlund E, Alexander JP, Overall CM, et al. Expression of matrix metalloproteinases (MMP-1 and MMP-2) and their inhibitors (TIMP-1, 2 and 3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymphonode metastasis. Br J Cancer. 1998;77(12):2239–45.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Khasigov PZ, Podobed OV, Gracheva TS, Salbiev KD, Grachev SV, Berezov TT. Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry (Mosc). 2003;68(7):711–7.CrossRefGoogle Scholar
  25. 25.
    Miguita L, Martinez EF, de Araújo NS, de Araújo VC. FGF-2, TGFbeta-1, PDGF-A and respective receptors expression in pleomorphic adenoma myoepithelial cells: an in vivo and in vitro study. J Appl Oral Sci. 2010;18(1):83–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Martinez EF, Montaldi PT, de Araújo NS, Altemani A, de Araújo VC. A proposal of an in vitro model which mimics in situ areas of carcinoma. J Cell Commun Signal. 2012;6(2):107–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jones JL, Royal JE, Critchley DR, Walker RA. Modulation of myoepithelial-associated α6β4 integrin in a breast cancer cell line alters invasive potential. Exp Cell Res. 1997;235:325–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Barsky SH, Karlin NJ. Mechanisms of disease: breast tumor pathogenesis and the role of the myoepithelial cell. Nat Clin Pract Oncol. 2006;3(3):138–51.CrossRefPubMedGoogle Scholar
  29. 29.
    Myoken Y, Myoken Y, Okamoto T, Sato JD, Kan M, McKeehan WL, et al. Immunohistochemical localization of fibroblast growth factor-1 (FGF-1), FGF-2 and fibroblast growth factor receptor-1 (FGFR-1) in pleomorphic adenoma of the salivary glands. J Oral Pathol Med. 1997;26(1):17–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Demasi AP, Furuse C, Soares AB, Altemani A, Araújo VC. Peroxiredoxin I, platelet- derived growth factor A, and platelet-derived growth factor receptor alpha are overexpressed in carcinoma ex-pleomorphic adenoma: association with malignant transformation. Hum Pathol. 2009;40(3):390–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kagami H, Hiramatsu Y, Hishida S, Okazaki Y, Horie K, Oda Y, et al. Salivary growth factors in health and disease. Adv Dent Res. 2000;14:99–102.CrossRefPubMedGoogle Scholar
  32. 32.
    Sredni B, Weil M, Khomenok G, Lebenthal I, Teitz S, Mardor Y, et al. Ammonium trichloro (dioxoethylene-o, o0) tellurate (AS101) sensitizes tumors to chemotherapy by inhibiting the tumor interleukin 10 autocrine loop. Cancer Res. 2004;64(5):1843–52.CrossRefPubMedGoogle Scholar
  33. 33.
    Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009;218:460–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor recep- tor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34:8690–707.CrossRefPubMedGoogle Scholar
  35. 35.
    Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol. 2014;28C:2–11.CrossRefGoogle Scholar
  36. 36.
    Moller P, Mechtersheimer G, Kaufmann M, Moldenhauer G, Momburg F, Mattfeldt T, et al. Expression of epidermal growth factor receptor in benign and malignant primary tumours of the breast. Virchows Arch A Pathol Anat Histopathol. 1989;414(2):157–64.CrossRefPubMedGoogle Scholar
  37. 37.
    Santini D, Ceccarelli C, Tardio ML, Taffurelli M, Marrano D. Immunocytochemical expression of epidermal Growth factor receptor in myoepithelial cells of the breast. Appl Immunohistochem Mol Morphol. 2002;10(1):29–33.PubMedGoogle Scholar
  38. 38.
    Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, et al. Sphingosyl phosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat Cell Biol. 2003;5:803–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Makarova G, Bette M, Schmidt A, Jacob R, Cai C, Rodepeter F, et al. Epidermal growth factor-induced modulation of cytokeratin expression levels influences the morphological phenotype of head and neck squamous cell carcinoma cells. Cell Tissue Res. 2013;351(1):59–72.CrossRefPubMedGoogle Scholar
  40. 40.
    de Oliveira PT, Jaeger MM, Miyagi SP, Jaeger RG. The effect of a reconstituted basement membrane (Matrigel) on a human salivary gland myoepithelioma cell line. Virchows Arch. 2001;439(4):571–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hua H, Li M, Luo T, Yin Y, Jiang Y. Matrix metalloproteinases in tumorigenesis: an evolving paradigm. Cell Mol Life Sci. 2011;68(23):3853–68.CrossRefPubMedGoogle Scholar
  44. 44.
    Ray JM, Stetler-Stevenson WG. Gelatinase A activity directly modulates melanoma cell adhesion and spreading. EMBO J. 1995;14:908–17.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bergers G, Coussens LM. Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev. 2000;10(1):120–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Lam RM. An electron microscopic histochemical study of the histogenesis of major salivary gland pleomorphic adenoma. Ultrastruct Pathol. 1985;8(2–3):207–23.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Natalia Festugatto Navarini
    • 1
  • Vera Cavalcanti de Araújo
    • 1
  • Amy Louise Brown
    • 1
  • Fabrício Passador-Santos
    • 1
  • Isabela Fernandes de Souza
    • 1
  • Marcelo Henrique Napimoga
    • 1
  • Ney Soares Araújo
    • 1
  • Elizabeth Ferreira Martinez
    • 1
  1. 1.Department of Oral PathologySão Leopoldo Mandic Institute and Research CenterCampinasBrazil

Personalised recommendations