Tumor Biology

, Volume 36, Issue 1, pp 219–225 | Cite as

miR-1285-3p acts as a potential tumor suppressor miRNA via downregulating JUN expression in hepatocellular carcinoma

  • Jibing Liu
  • Jingchen Yan
  • Changchun Zhou
  • Qinghua Ma
  • Qingyan Jin
  • Zhenbin Yang
Research Article

Abstract

In the world, hepatocellular carcinoma (HCC) is one of the most common and most lethal cancers. Currently, standard therapy for unresectable HCC is a local–regional therapy with transarterial chemoembolisation (TACE). In this study, we sought to assess whether plasma circulating microRNAs (miRNAs) can be used to predict the prognosis of HCC patients receiving the TACE treatment. Firstly, we systematically examined TACE therapeutic effectiveness-related circulating miRNAs through miRNA Profiling Chips. As a result, we identified 19 circulating miRNAs to be significantly differentially expressed between the TACE-response group and the TACE-nonresponse group. In the second stage, we performed quantitative analyses of these candidate miRNAs in additional HCC patients treated with TACE and validated two of the aforementioned 19 miRNAs (miR-1285-3p and miR-4741) as candidate biomarkers for predicting prognosis of TACE. Interestingly, we found that miR-1285-3p could directly repress JUN oncogene expression in HCC cells, indicating miR-1285-3p could act as a potential tumor suppressor. In conclusion, our data indicate that circulating miR-1285-3p and miR-4741 was predictive of response to TACE therapy in HCC.

Keywords

miR-1285-3p JUN Plasma HCC TACE Prognosis 

Notes

Funding supports

This study is supported by the development projects of Shandong Province Science and Technology (2012GSF11837).

Conflicts of interest

None

Supplementary material

13277_2014_2622_MOESM1_ESM.doc (14 kb)
Supplementary Table 1 (DOC 13 kb)
13277_2014_2622_Fig5_ESM.jpg (116 kb)
Supplementary Fig. 1

(JPEG 115 kb)

References

  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  2. 2.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.CrossRefPubMedGoogle Scholar
  3. 3.
    Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, et al. A decade’s studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130(4):187–96.CrossRefPubMedGoogle Scholar
  4. 4.
    Vogl TJ, Naguib NN, Nour-Eldin NE, Rao P, Emami AH, Zangos S, et al. Review on transarterial chemoembolization in hepatocellular carcinoma: palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur J Radiol. 2009;72(3):505–16.CrossRefPubMedGoogle Scholar
  5. 5.
    Gottesman S. Small RNAs shed some light. Cell. 2004;118(1):1–2.CrossRefPubMedGoogle Scholar
  6. 6.
    Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med. 2005;11(7):712–4.CrossRefPubMedGoogle Scholar
  7. 7.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Tang X, Li M, Lu C, Shi J, Zhou L, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res Treat. 2013;140(1):151–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhou L, Zhang X, Li Z, Zhou C, Li M, Tang X, et al. Association of a genetic variation in a miR-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLoS One. 2013;8(5):e64331.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang X, Wei J, Zhou L, Zhou C, Shi J, Yuan Q, et al. A functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma. Carcinogenesis. 2013;34(10):2309–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Yao J, Liu L, Yang M. Interleukin-23 receptor genetic variants contribute to susceptibility of multiple cancers. Gene. 2014;533(1):21–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kota J, Chivukula RR, O′Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ding J, Huang S, Wu S, Zhao Y, Liang L, Yan M, et al. Gain of miR-151 on chromosome 8q24.3 facilitates tumour cell migration and spreading through downregulating RhoGDIA. Nat Cell Biol. 2010;12(4):390–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, et al. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma. Cancer Cell. 2011;19(2):232–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou C, Liu J, Li Y, Liu L, Zhang X, Ma CY, et al. microRNA-1274a, a modulator of sorafenib induced a disintegrin and metalloproteinase 9 (ADAM9) down-regulation in hepatocellular carcinoma. FEBS Lett. 2011;585(12):1828–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci U S A. 2009;106(11):4402–7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.CrossRefPubMedGoogle Scholar
  21. 21.
    Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Tian S, Huang S, Wu S, Guo W, Li J, He X. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3′ untranslated region. Biochem Biophys Res Commun. 2010;396(2):435–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Shaulian E. AP-1—the Jun proteins: Oncogenes or tumor suppressors in disguise? Cell Signal. 2010;22(6):894–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Lamph WW, Wamsley P, Sassone-Corsi P, Verma IM. Induction of proto-oncogene JUN/AP-1 by serum and TPA. Nature. 1988;334(6183):629–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41(16):2449–61.CrossRefPubMedGoogle Scholar
  27. 27.
    Bohmann D, Bos TJ, Admon A, Nishimura T, Vogt PK, Tjian R. Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. Science. 1987;238(4832):1386–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK. Avian sarcoma virus 17 carries the jun oncogene. Proc Natl Acad Sci U S A. 1987;84(9):2848–52.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eferl R, Ricci R, Kenner L, Zenz R, David JP, Rath M, et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell. 2003;112(2):181–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Machida K, Tsukamoto H, Liu JC, Han YP, Govindarajan S, Lai MM, et al. c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology. 2010;52(2):480–92.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Watanabe T, Hiasa Y, Tokumoto Y, Hirooka M, Abe M, Ikeda Y, et al. Protein kinase R modulates c-Fos and c-Jun signaling to promote proliferation of hepatocellular carcinoma with hepatitis C virus infection. PLoS One. 2013;8(7):e67750.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yang Z, Zhang Y, Wang L. A feedback inhibition between miRNA-127 and TGFβ/c-Jun cascade in HCC cell migration via MMP13. PLoS One. 2013;8(6):e65256.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Jibing Liu
    • 1
  • Jingchen Yan
    • 3
  • Changchun Zhou
    • 2
  • Qinghua Ma
    • 1
  • Qingyan Jin
    • 1
  • Zhenbin Yang
    • 4
  1. 1.Department of Intervention Surgery, Shandong Cancer HospitalShandong Academy of Medical SciencesJinanChina
  2. 2.Clinical Laboratory, Shandong Cancer HospitalShandong Academy of Medical SciencesJinanChina
  3. 3.Department of InterventionLiaochengChina
  4. 4.Clinical Laboratory MedicineLiaocheng Isolation HospitalLiaochengChina

Personalised recommendations