Tumor Biology

, Volume 36, Issue 1, pp 239–249 | Cite as

Lead discovery and in silico 3D structure modeling of tumorigenic FAM72A (p17)

  • Subrata Pramanik
  • Arne Kutzner
  • Klaus Heese
Research Article


FAM72A (p17) is a novel neuronal protein that has been linked to tumorigenic effects in non-neuronal tissue. Using state of the art in silico physicochemical analyses (e.g., I-TASSER, RaptorX, and Modeller), we determined the three-dimensional (3D) protein structure of FAM72A and further identified potential ligand-protein interactions. Our data indicate a Zn2+/Fe3+-containing 3D protein structure, based on a 3GA3_A model template, which potentially interacts with the organic molecule RSM ((2s)-2-(acetylamino)-N-methyl-4-[(R)-methylsulfinyl] butanamide). The discovery of RSM may serve as potential lead for further anti-FAM72A drug screening tests in the pharmaceutical industry because interference with FAM72A’s activities via RSM-related molecules might be a novel option to influence the tumor suppressor protein p53 signaling pathways for the treatment of various types of cancers.


Ugene FAM72A In silico 3D structure Cancer RSM 



This study was supported by Hanyang University. The authors declare no competing interests.

Supplementary material

13277_2014_2620_MOESM1_ESM.pdf (108 kb)
ESM 1 (PDF 107 kb)
13277_2014_2620_MOESM2_ESM.pdf (23.3 mb)
ESM 2 (PDF 23.2 MB)


  1. 1.
    Jung KW, Won YJ, Kong HJ, Oh CM, Seo HG, Lee JS. Cancer statistics in Korea: incidence, mortality, survival and prevalence in 2010. Cancer Res Treat. 2013;45:1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nehar S, Mishra M, Heese K. Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett. 2009;583:3247–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Heese K. The protein p17 signaling pathways in cancer. Tumour Biol. 2013;34:4081–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Guo C, Zhang X, Fink SP, Platzer P, Wilson K, Willson JK, et al. Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res. 2008;68:6118–26.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jorgensen WL. Drug discovery: pulled from a protein’s embrace. Nature. 2010;466:42–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Jorgensen WL. Foundations of biomolecular modeling. Cell. 2013;155:1199–202.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Renault L, Chou HT, Chiu PL, Hill RM, Zeng X, Gipson B, et al. Milestones in electron crystallography. J Comput Aided Mol Des. 2006;20:519–27.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rusche B. The 3Rs and animal welfare—conflict or the way forward? ALTEX. 2003;20:63–76.PubMedGoogle Scholar
  9. 9.
    Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303:1813–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Michel J, Essex JW. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des. 2010;24:639–58.CrossRefPubMedGoogle Scholar
  11. 11.
    Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des. 2012;26:15–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Peng J, Xu J. A multiple-template approach to protein threading. Proteins. 2011;79:1930–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, et al. Template-based protein structure modeling using the RaptorX Web server. Nat Protoc. 2012;7:1511–22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ma J, Wang S, Zhao F, Xu J. Protein threading using context-specific alignment potential. Bioinformatics. 2013;29:i257–65.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sanchez-Gonzalez G, Kim JK, Kim DS, Garduno-Juarez R. A beta-complex statistical four body contact potential combined with a hydrogen bond statistical potential recognizes the correct native structure from protein decoy sets. Proteins. 2013;81:1420–33.CrossRefPubMedGoogle Scholar
  17. 17.
    Coordinators NR. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2014;42:D7–17.CrossRefGoogle Scholar
  18. 18.
    Zhang Y. I-TASSER server for protein 3d structure prediction. BMC Bioinformatics. 2008;9:40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Webb B, Sali A. Protein structure modeling with modeller. Methods Mol Biol. 2014;1137:1–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ, et al. MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014;42:D336–46.CrossRefPubMedGoogle Scholar
  21. 21.
    Moreno-Vargas L, Correa-Basurto J, Maroun RC, Fernandez FJ. Homology modeling of the structure of acyl CoA:isopenicillin n-acyltransferase (IAT) from penicillium chrysogenum IAT interaction studies with isopenicillin-n, combining molecular dynamics simulations and docking. J Mol Model. 2012;18:1189–205.CrossRefPubMedGoogle Scholar
  22. 22.
    Jakubik J, Randakova A, Dolezal V. On homology modeling of the M(2) muscarinic acetylcholine receptor subtype. J Comput Aided Mol Des. 2013;27:525–38.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dhanavade MJ, Jalkute CB, Barage SH, Sonawane KD. Homology modeling, molecular docking and md simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of amyloid beta peptide. Comput Biol Med. 2013;43:2063–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Nicolau Jr N, Giuliatti S. Modeling and molecular dynamics of the intrinsically disordered e7 proteins from high- and low-risk types of human papillomavirus. J Mol Model. 2013;19:4025–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Tarhda Z, Semlali O, Kettani A, Moussa A, Abumrad NA, Ibrahimi A. Three dimensional structure prediction of fatty acid binding site on human transmembrane receptor CD36. Bioinform Biol Insights. 2013;7:369–73.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yadav BS, Tripathi V, Kumar A, Khan MF, Barate A, Kumar A, et al. Molecular modeling and docking characterization of Dectin-1 (PAMP) receptor of Bubalus bubalis. Exp Mol Pathol. 2012;92:7–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Basta HA, Sgro JY, Palmenberg AC. Modeling of the human rhinovirus C capsid suggests a novel topography with insights on receptor preference and immunogenicity. Virology. 2014;448:176–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Moreira LG, Pereira LC, Drummond PR, De Mesquita JF. Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS ONE. 2013;8:e81979.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ashok Kumar HG, Venkatesh YP. In silico analyses of structural and allergenicity features of sapodilla (Manilkara zapota) acidic thaumatin-like protein in comparison with allergenic plant TLPs. Mol Immunol. 2014;57:119–28.CrossRefPubMedGoogle Scholar
  30. 30.
    Lodhi SS, Farmer R, Singh AK, Jaiswal YK, Wadhwa G. 3d structure generation, virtual screening and docking of human Ras-associated binding (Rab3a) protein involved in tumourigenesis. Mol Biol Rep. 2014;41:3951–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Dhanavade MJ, Sonawane KD: Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques. Amino Acids. 2014Google Scholar
  32. 32.
    Chaturvedi P, Dhanik M, Pande A. Characterization and structural analysis of hepcidin like antimicrobial peptide from Schizothorax richardsonii (Gray). Protein J. 2014;33:1–10.CrossRefPubMedGoogle Scholar
  33. 33.
    de Carvalho MD, De Mesquita JF. Structural modeling and in silico analysis of human superoxide dismutase 2. PLoS ONE. 2013;8:e65558.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8:477–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33:2302–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hadley C, Jones DT. A systematic comparison of protein structure classifications: SCOP, CATH and FSSP. Structure. 1999;7:1099–112.CrossRefPubMedGoogle Scholar
  37. 37.
    Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66:133–44.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lomb L, Barends TR, Kassemeyer S, Aquila A, Epp SW, Erk B, et al. Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron laser. Phys Rev B Condens Matter Mater Phys. 2011;84:214111.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Betancourt MR, Skolnick J. Universal similarity measure for comparing protein structures. Biopolymers. 2001;59:305–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res. 2013;41:D1096–103.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29:2588–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ruan P, Hayashida M, Maruyama O, Akutsu T. Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels. BMC Bioinformatics. 2014;15(2):S6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics. 2006;5:5–6.Google Scholar
  44. 44.
    Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000;29:291–325.CrossRefPubMedGoogle Scholar
  45. 45.
    Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins. 2004;57:702–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Tai CH, Bai H, Taylor TJ, Lee B. Assessment of template-free modeling in CASP10 and ROLL. Proteins. 2014;82 Suppl 2:57–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Kryshtafovych A, Monastyrskyy B, Fidelis K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins. 2014;82 Suppl 2:7–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Baker BR, Garrell RL. G-factor analysis of protein secondary structure in solutions and thin films. Faraday Discuss. 2004;126:209–22. discussion 45–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Morris AL, MacArthur MW, Hutchinson EG, Thornton JM. Stereochemical quality of protein structure coordinates. Proteins. 1992;12:345–64.CrossRefPubMedGoogle Scholar
  51. 51.
    Groll M, Bochtler M, Brandstetter H, Clausen T, Huber R. Molecular machines for protein degradation. Chembiochem. 2005;6:222–56.CrossRefPubMedGoogle Scholar
  52. 52.
    McPhie P. Circular dichroism studies on proteins in films and in solution: estimation of secondary structure by G-factor analysis. Anal Biochem. 2001;293:109–19.CrossRefPubMedGoogle Scholar
  53. 53.
    Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, et al. PharmMapper server: a Web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38:W609–14.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kubinyi H. Drug research: myths, hype and reality. Nat Rev Drug Discov. 2003;2:665–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lee HS, Zhang Y. BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins. 2012;80:93–110.CrossRefPubMedGoogle Scholar
  56. 56.
    Karakas M, Woetzel N, Meiler J. BCL::contact-low confidence fold recognition hits boost protein contact prediction and de novo structure determination. J Comput Biol. 2010;17:153–68.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kryshtafovych A, Moult J, Bales P, Bazan JF, Biasini M, Burgin A, et al. Challenging the state of the art in protein structure prediction: highlights of experimental target structures for the 10th critical assessment of techniques for protein structure prediction experiment CASP10. Proteins. 2014;82 Suppl 2:26–42.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure prediction (CASP)—round x. Proteins. 2014;82 Suppl 2:1–6.CrossRefPubMedGoogle Scholar
  59. 59.
    Klug A. Zinc finger peptides for the regulation of gene expression. J Mol Biol. 1999;293:215–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci. 2007;32:63–70.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhong F, Lisi GP, Collins DP, Dawson JH, Pletneva EV. Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Proc Natl Acad Sci U S A. 2014;111:E306–15.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ranaivoson FM, Neiers F, Kauffmann B, Boschi-Muller S, Branlant G, Favier F. Methionine sulfoxide reductase B displays a high level of flexibility. J Mol Biol. 2009;394:83–93.CrossRefPubMedGoogle Scholar
  63. 63.
    Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov. 2011;10:188–95.CrossRefPubMedGoogle Scholar
  64. 64.
    Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8:203–12.CrossRefPubMedGoogle Scholar
  65. 65.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Hainaut P, Plymoth A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 2013;25:50–1.CrossRefPubMedGoogle Scholar
  67. 67.
    Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zheng YW, Tsuchida T, Taniguchi H. A novel concept of identifying precancerous cells to enhance anti-cancer therapies. J Hepatobiliary Pancreat Sci. 2012;19:621–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Zieba A, Grannas K, Soderberg O, Gullberg M, Nilsson M, Landegren U. Molecular tools for companion diagnostics. N Biotechnol. 2012;29:634–40.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Information Systems, College of EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations