Tumor Biology

, Volume 35, Issue 11, pp 10609–10613 | Cite as

Role of microRNA-93 in regulation of angiogenesis

  • Fangxuan Li
  • Xiaofeng Liang
  • Ying Chen
  • Shixia Li
  • Juntian Liu


Angiogenesis is essential for a wide variety of physiological and pathological processes. To date, many angiogenic microRNAs (miRNAs) have been identified and several of them were further investigated to elucidate the mechanisms of specific miRNAs in regulating angiogenesis. In recent studies concerning tumor and ischemia, the miRNA-93 had been demonstrated to be able to modulate angiogenesis in different molecular pathways. The miRNA-93 can promote angiogenesis via enhancing endothelial cell proliferation, migration, and tube formation. Additionally, miRNA-93-over-expressing cells developed a relationship with the blood vessels allowing tumor cells to survive and to grow well. However, high expression of miRNA-93 can depress the vascular endothelial growth factor (VEGF) secretion and its downstream molecular targets in in vivo and vitro experiments. MiRNA-93’s effects on angiogenesis are dependent on the interaction of other multiple genes and signal pathways, such as P21, E2F1, integrin-β8, LATS2, etc. Future investigation should involve mapping the network by which miRNA-93 exerts its functions.


MicroRNA-93 VEGF Angiogenesis 



This work was supported partially by the Tianjin Natural Science Funds (13JCYBJC24200) and the National Natural Science Foundation (81302250) of China.

Conflicts of interest



  1. 1.
    Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 2011;147:382–95.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.PubMedCrossRefGoogle Scholar
  5. 5.
    Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107:6334–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Dao P, Jarray R, Smith N, Lepelletier Y, Coq JL, Lietha D, et al. Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities. Cancer Lett. 2014.Google Scholar
  7. 7.
    Hong L, Li S, Han Y, Du J, Zhang H, Li J, et al. Angiogenesis-related molecular targets in esophageal cancer. Expert Opin Investig Drugs. 2011;20:637–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308:833–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuda S, Ichigotani Y, Okuda T, Irimura T, Nakatsugawa S, Hamaguchi M. Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim Biophys Acta. 2000;1490:163–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082–7.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, et al. MiR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15:272–84.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38:1060–5.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009;324:1710–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, et al. The Myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res. 2010;70:8233–46.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Li F, Liu J, Li S. MicroRNA 106b approximately 25 cluster and gastric cancer. Surg Oncol. 2013;22:e7–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N, et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res. 2008;68:8976–85.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Du L, Schageman JJ, Subauste MC, Saber B, Hammond SM, Prudkin L, et al. MiR-93, miR-98, and miR-197 regulate expression of tumor suppressor gene FUS1. Mol Cancer Res. 2009;7:1234–43.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Hazarika S, Farber CR, Dokun AO, Pitsillides AN, Wang T, Lye RJ, et al. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway. Circulation. 2013;127:1818–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Savita U, Karunagaran D. MicroRNA-106b-25 cluster targets beta-TRCP2, increases the expression of snail and enhances cell migration and invasion in H1299 (non small cell lung cancer) cells. Biochem Biophys Res Commun. 2013;434:841–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Fang L, Deng Z, Shatseva T, Yang J, Peng C, Du WW, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8. Oncogene. 2011;30:806–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H, et al. MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle. 2012;11:4352–65.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Dang LT, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol. 2013;33:193–200.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ling S, Birnbaum Y, Nanhwan MK, Thomas B, Bajaj M, Ye Y. MicroRNA-dependent cross-talk between VEGF and HIF1 alpha in the diabetic retina. Cell Signal. 2013;25:2840–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, et al. Mirna-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1:e116.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Long J, Wang Y, Wang W, Chang BH, Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285:23457–65.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, et al. MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis. 2012;33:1522–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Liakouli V, Cipriani P, Marrelli A, Alvaro S, Ruscitti P, Giacomelli R. Angiogenic cytokines and growth factors in systemic sclerosis. Autoimmun Rev. 2011;10:590–4.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Fangxuan Li
    • 1
  • Xiaofeng Liang
    • 1
  • Ying Chen
    • 2
  • Shixia Li
    • 1
  • Juntian Liu
    • 1
  1. 1.Department of Cancer Prevention CenterTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
  2. 2.Department of Gynecologic OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina

Personalised recommendations