Advertisement

Tumor Biology

, Volume 35, Issue 12, pp 12749–12755 | Cite as

Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation

  • Yue Chen
  • Tinghui Jiang
  • Aiwu Mao
  • Jianrong Xu
Research Article

Abstract

Cancer stem cells (CSCs) are a distinct population in tumors and cause cancer relapse and metastasis. Thus, treating CSCs are believed to be potential to cure rapidly growing and highly metastatic cancers. To date, CSCs in esophageal cancer have not been characterized. In the current study, we detected significant higher levels of placental growth factor (PLGF) and matrix metalloproteinase 9 (MMP9) in the esophageal cancers with metastasis, compared to those without metastasis, in which the expression levels of PLGF and MMP9 strongly correlated with each other. Thus, we used a human esophageal cancer cell line, TE-1, to examine the cross talk of PLGF and MMP9. We found that the levels of PLGF in TE-1 cells positively affected the levels of MMP9, while the levels of MMP9 did not affected the levels of PLGF, suggesting that PLGF may activate MMP9 in esophageal cancer cells. Then, we separated PLGF-positive and PLGF-negative TE-1 cells that had been transfected with a GFP reporter under a PLGF promoter by flow cytometry. We found that PLGF-positive cells grew significantly faster than PLGF-negative cells both in vitro and in vivo in a stereotactical implantation model, suggesting that PLGF-positive cells are likely CSCs in esophageal cancer. Taken together, we demonstrate that PLGF-positive cells appear to be CSCs in esophageal cancer, and they may release PLGF to promote cancer metastasis through MMP9 activation.

Keywords

Esophageal cancer Cancer stem cells Placental growth factor Matrix metalloproteinases 9 Metastasis 

Notes

Acknowledgments

This work was financially supported by the Shanghai Municipal Commission of Health and Family Planning Foundation No. 20134036.

Conflicts of interest

None

References

  1. 1.
    Umar SB, Fleischer DE. Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol. 2008;5:517–26. doi: 10.1038/ncpgasthep1223.CrossRefGoogle Scholar
  2. 2.
    Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol. 2007;17:2–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Petersson M, Niemann C. Stem cell dynamics and heterogeneity: implications for epidermal regeneration and skin cancer. Curr Med Chem. 2012;19:5984–92.PubMedCrossRefGoogle Scholar
  4. 4.
    Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Dufour A, Overall CM. Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci. 2013;34:233–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.PubMedCrossRefGoogle Scholar
  8. 8.
    Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7:575–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Eriksson A, Cao R, Pawliuk R, Berg SM, Tsang M, Zhou D, et al. Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell. 2002;1:99–108.PubMedCrossRefGoogle Scholar
  11. 11.
    Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.PubMedGoogle Scholar
  12. 12.
    Rhee JS, Coussens LM. RECKing MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Li B, Tsao SW, Li YY, Wang X, Ling MT, Wong YC, et al. Id-1 promotes tumorigenicity and metastasis of human esophageal cancer cells through activation of PI3K/AKT signaling pathway. Int J Cancer. 2009;125:2576–85.PubMedCrossRefGoogle Scholar
  14. 14.
    Mroczko B, Kozlowski M, Groblewska M, Lukaszewicz M, Niklinski J, Laudanski J, et al. Expression of matrix metalloproteinase-9 in the neoplastic and interstitial inflammatory infiltrate cells in the different histopathological types of esophageal cancer. Folia Histochem Cytobiol. 2008;46:471–8.PubMedGoogle Scholar
  15. 15.
    Kataoka M, Yamagata S, Takagi H, Thant A, Akiyama S, Iida K, et al. Matrix metalloproteinase 2 and 9 in esophageal cancer. Int J Oncol. 1996;8:773–9.PubMedGoogle Scholar
  16. 16.
    Shima I, Sasaguri Y, Arima N, Yamana H, Fujita H, Morimatsu M, et al. Expression of epidermal growth-factor (EGF), matrix metalloproteinase-9 (mmp-9) and proliferating cell nuclear antigen (pcna) in esophageal cancer. Int J Oncol. 1995;6:833–9.PubMedGoogle Scholar
  17. 17.
    Hori T, Yamashita Y, Ohira M, Matsumura Y, Muguruma K, Hirakawa K. A novel orthotopic implantation model of human esophageal carcinoma in nude rats: CD44H mediates cancer cell invasion in vitro and in vivo. Int J Cancer. 2001;92:489–96.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhou X, Qi Y. PlGF inhibition impairs metastasis of larynx carcinoma through MMP3 downregulation. Tumour Biol. 2014. doi: 10.1007/s13277-014-2232-2.PubMedCentralGoogle Scholar
  19. 19.
    Zins K, Thomas A, Lucas T, Sioud M, Aharinejad S, Abraham D. Inhibition of stromal PlGF suppresses the growth of prostate cancer xenografts. Int J Mol Sci. 2013;14:17958–71.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Li B, Wang C, Zhang Y, Zhao XY, Huang B, Wu PF, et al. Elevated PLGF contributes to small-cell lung cancer brain metastasis. Oncogene. 2013;32:2952–62.PubMedCrossRefGoogle Scholar
  21. 21.
    Laurent J, Hull EF, Touvrey C, Kuonen F, Lan Q, Lorusso G, et al. Proangiogenic factor PlGF programs CD11b(+) myelomonocytes in breast cancer during differentiation of their hematopoietic progenitors. Cancer Res. 2011;71:3781–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Van de Veire S, Stalmans I, Heindryckx F, Oura H, Tijeras-Raballand A, Schmidt T, et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell. 2010;141:178–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, et al. The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene. 1999;18:2883–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yue Chen
    • 1
  • Tinghui Jiang
    • 2
  • Aiwu Mao
    • 2
  • Jianrong Xu
    • 1
  1. 1.Department of Radiology, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina
  2. 2.Intervention Center, Tongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations