Skip to main content
Log in

Promoter polymorphisms of miR-34b/c are associated with risk of gastric cancer in a Chinese population

  • Research Article
  • Published:
Tumor Biology

Abstract

More and more evidence reveals that noncoding RNA miR-34b/c and tumor suppressor gene TP-53 independently, and/or jointly, play crucial roles in carcinogenesis. The purpose of the present hospital-based case–control study was to investigate the association between the miR-34b/c rs4938723 and TP53 Arg72Pro polymorphisms and the risk of gastric cancer. Two polymorphisms were genotyped in 419 gastric cancer patients and 402 age- and sex-matched cancer-free controls using polymerase chain reaction-restriction fragment length polymorphism analysis. The CC genotype and C allele of the miR-34b/c rs4938723 were associated with a significantly decreased risk of gastric cancer compared with the TT genotype and T allele (CC vs. TT: P = 0.006, adjusted odds ratio (OR) = 0.53, 95 % confidence interval (95 % CI) = 0.34–0.83; C vs. T: P = 0.005, adjusted OR = 0.75, 95 % CI = 0.61–0.92). Compared with individuals with the wild-type TT genotype, subjects with the variant genotypes (CT + CC) had a significantly decreased risk of gastric cancer (P = 0.047, adjusted OR = 0.75, 95 % CI = 0.57–0.99). Stratified analysis showed that the association between the risk of gastric cancer and the variant genotypes of miR-34b/c was more profound among men. However, no overall association was found between the TP53 Arg72Pro polymorphism and gastric cancer risk. In the combined analysis, no effects of the interaction of miR-34b/c rs4938723 and TP53Arg72Pro on gastric cancer risk were observed. Our findings indicate that the miR-34b/c rs4938723 CT/CC genotypes may be associated with a decreased risk of gastric cancer and the C allele may be a protective factor in gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12(3):354–62.

    Article  Google Scholar 

  2. Ushijima T, Sasako M. Focus on gastric cancer. Cancer Cell. 2004;5(2):121–5.

    Article  CAS  Google Scholar 

  3. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—first American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–40.

    CAS  PubMed  Google Scholar 

  4. Wu MS, Chen CJ, Lin JT. Host-environment interactions: their impact on progression from gastric inflammation to carcinogenesis and on development of new approaches to prevent and treat gastric cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1878–82. doi:10.1158/1055-9965.EPI-04-0792.

    Article  Google Scholar 

  5. Zhu H, Yang L, Zhou B, Yu R, Tang N, Wang B. Myeloperoxidase G-463A polymorphism and the risk of gastric cancer: a case–control study. Carcinogenesis. 2006;27(12):2491–6. doi:10.1093/carcin/bgl121.

    Article  CAS  Google Scholar 

  6. Gu H, Yang L, Tang N, Zhou B, Zhu H, Sun Q, et al. Association of endothelin-converting enzyme-1b C-338A polymorphism with gastric cancer risk: a case–control study. Eur J Cancer. 2008;44(9):1253–8. doi:10.1016/j.ejca.2007.09.013.

    Article  CAS  Google Scholar 

  7. Yang L, Gu HJ, Zhu HJ, Sun QM, Cong RH, Zhou B, et al. Tissue inhibitor of metalloproteinase-2 G-418C polymorphism is associated with an increased risk of gastric cancer in a Chinese population. Eur J Surg Oncol. 2008;34(6):636–41. doi:10.1016/j.ejso.2007.09.003.

    Article  CAS  Google Scholar 

  8. Rozan LM, El-Deiry WS. p53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death Differ. 2007;14(1):3–9. doi:10.1038/sj.cdd.4402058.

    Article  CAS  Google Scholar 

  9. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Article  CAS  Google Scholar 

  10. Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, et al. Mutations and polymorphisms in TP53 gene—an overview on the role in colorectal cancer. Mutagenesis. 2012;27(2):211–8. doi:10.1093/mutage/ger067.

    Article  CAS  Google Scholar 

  11. Ara S, Lee PS, Hansen MF, Saya H. Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 1990;18(16):4961.

    Article  CAS  Google Scholar 

  12. Hadhri-Guiga B, Toumi N, Khabir A, Sellami-Boudawara T, Ghorbel A, Daoud J, et al. Proline homozygosity in codon 72 of TP53 is a factor of susceptibility to nasopharyngeal carcinoma in Tunisia. Cancer Genet Cytogenet. 2007;178(2):89–93. doi:10.1016/j.cancergencyto.2007.05.013.

    Article  CAS  Google Scholar 

  13. Jiang P, Liu J, Zeng X, Li W, Tang J. Association of TP53 codon 72 polymorphism with cervical cancer risk in Chinese women. Cancer Genet Cytogenet. 2010;197(2):174–8. doi:10.1016/j.cancergencyto.2009.11.011.

    Article  CAS  Google Scholar 

  14. Gao LB, Li LJ, Pan XM, Li ZH, Liang WB, Bai P, et al. A genetic variant in the promoter region of miR-34b/c is associated with a reduced risk of colorectal cancer. Biol Chem. 2013;394(3):415–20. doi:10.1515/hsz-2012-0297/j/bchm.2013.394.issue-3/hsz-2012-0297/hsz-2012-0297.xml.

    Article  CAS  Google Scholar 

  15. Denisov EV, Cherdyntseva NV, Litvyakov NV, Slonimskaya EM, Malinovskaya EA, Voevoda MI, et al. TP53 mutations and Arg72Pro polymorphism in breast cancers. Cancer Genet Cytogenet. 2009;192(2):93–5. doi:10.1016/j.cancergencyto.2009.03.014.

    Article  CAS  Google Scholar 

  16. Fernandez-Rubio A, Lopez-Cima MF, Gonzalez-Arriaga P, Garcia-Castro L, Pascual T, Marron MG, et al. The TP53 Arg72Pro polymorphism and lung cancer risk in a population of Northern Spain. Lung Cancer. 2008;61(3):309–16. doi:10.1016/j.lungcan.2008.01.017.

    Article  Google Scholar 

  17. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52. doi:10.1016/j.molcel.2007.05.010.

    Article  CAS  Google Scholar 

  18. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4. doi:10.1038/nature05939.

    Article  CAS  Google Scholar 

  19. Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128(2):412–7. doi:10.1002/ijc.25342.

    Article  Google Scholar 

  20. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development. 1998;125(24):4909–17.

    Article  CAS  Google Scholar 

  21. Chou J, Provot S, Werb Z. GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol. 2010;222(1):42–9. doi:10.1002/jcp.21943.

    Article  CAS  Google Scholar 

  22. Son MS, Jang MJ, Jeon YJ, Kim WH, Kwon CI, Ko KH, et al. Promoter polymorphisms of pri-miR-34b/c are associated with hepatocellular carcinoma. Gene. 2013;524(2):156–60. doi:10.1016/j.gene.2013.04.042.

    Article  CAS  Google Scholar 

  23. Zhang S, Qian J, Cao Q, Li P, Wang M, Wang J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with renal cell cancer risk in a Chinese population. Mutagenesis. 2014;29(2):149–54. doi:10.1093/mutage/geu001.

    Article  CAS  Google Scholar 

  24. Li L, Sima X, Bai P, Zhang L, Sun H, Liang W, et al. Interactions of miR-34b/c and TP53 polymorphisms on the risk of intracranial aneurysm. Clin Dev Immunol. 2012;2012:567586. doi:10.1155/2012/567586.

    PubMed  PubMed Central  Google Scholar 

  25. Li L, Wu J, Sima X, Bai P, Deng W, Deng X, et al. Interactions of miR-34b/c and TP-53 polymorphisms on the risk of nasopharyngeal carcinoma. Tumour Biol. 2013;34(3):1919–23. doi:10.1007/s13277-013-0736-9.

    Article  CAS  Google Scholar 

  26. Wei YG, Liu F, Li B, Chen X, Ma Y, Yan LN, et al. Interleukin-10 gene polymorphisms and hepatocellular carcinoma susceptibility: a meta-analysis. World J Gastroenterol. 2011;17(34):3941–7. doi:10.3748/wjg.v17.i34.3941.

    Article  CAS  Google Scholar 

  27. Zhang YM, Zhou XC, Xu Z, Tang CJ. Meta-analysis of epidemiological studies of association of two polymorphisms in the interleukin-10 gene promoter and colorectal cancer risk. Genet Mol Res. 2012;11(3):3389–97. doi:10.4238/2012.September.25.7.

    Article  CAS  Google Scholar 

  28. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17(2):236–45. doi:10.1038/cdd.2009.109.

    Article  CAS  Google Scholar 

  29. Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ. 2010;17(2):193–9. doi:10.1038/cdd.2009.56.

    Article  CAS  Google Scholar 

  30. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011;4(197):ra71. doi:10.1126/scisignal.2001744.

    Article  Google Scholar 

  31. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A. 2007;104(39):15472–7. doi:10.1073/pnas.0707351104.

    Article  CAS  Google Scholar 

  32. Suzuki R, Yamamoto E, Nojima M, Maruyama R, Yamano HO, Yoshikawa K, et al. Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. J Gastroenterol. 2013. doi:https://doi.org/10.1007/s00535-013-0861-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, et al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res. 2008;68(11):4123–32. doi:10.1158/0008-5472.CAN-08-0325.

    Article  CAS  Google Scholar 

  34. Song HR, Kweon SS, Kim HN, Piao JM, Yun WJ, Choi JS, et al. p53 codon 72 polymorphism in patients with gastric and colorectal cancer in a Korean population. Gastric Cancer. 2011;14(3):242–8. doi:10.1007/s10120-011-0034-4.

    Article  Google Scholar 

  35. Shen H, Solari A, Wang X, Zhang Z, Xu Y, Wang L, et al. P53 codon 72 polymorphism and risk of gastric cancer in a Chinese population. Oncol Rep. 2004;11(5):1115–20.

    CAS  Google Scholar 

  36. Sul J, Yu GP, Lu QY, Lu ML, Setiawan VW, Wang MR, et al. P53 codon 72 polymorphisms: a case–control study of gastric cancer and potential interactions. Cancer Lett. 2006;238(2):210–23. doi:10.1016/j.canlet.2005.07.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the “Medical ZhongDianRenCai Project” of Jiangsu Province (grant no. RC2011059), the Natural Science Foundation of Jiangsu Province (grant no. BK20131447 (DA13)), “Six RenCai Gaofeng,” “333 Project,” and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (grant no. JX10231801).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Additional information

Chao Yang, Xiang Ma, and Dongxiao Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Ma, X., Liu, D. et al. Promoter polymorphisms of miR-34b/c are associated with risk of gastric cancer in a Chinese population. Tumor Biol. 35, 12545–12554 (2014). https://doi.org/10.1007/s13277-014-2574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2574-9

Keywords

Navigation