Skip to main content

Advertisement

Log in

Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

The tumor suppressor LKB1 gene is a master kinase and inhibits mammalian target of rapamycin (mTOR) by activating AMP-activated protein kinase (AMPK) and AMPK-related kinases. LKB1 is a critical intermediate in the mTOR signaling pathway, and mutations of the LKB1 gene have been implicated in the development of different tumor types. Recent evidence indicates that LKB1 alterations contribute to cancer progression and metastasis by modulating vascular endothelial growth factor (VEGF) production. The Ras homolog enriched in brain (RHEB) protein is a component of the mTOR pathway and functions as a positive regulator of mTOR. However, the mechanisms and effectors of RHEB in mTOR signaling are not well known. In this study, we analyzed the expression of RHEB and HIF1α genes in correlation with LKB1 gene mutations. All coding exons and exon/intron boundaries of the LKB1 gene were analyzed by direct sequencing in 77 renal cell carcinoma (RCC) tumors and 62 matched noncancerous tissue samples. In 51.6 % of the patients, ten different mutations including four novel mutations in the coding sequences and six single nucleotide substitutions in the introns were observed. Rheb and HIF1α expression levels were not statistically different between the tumor and corresponding noncancerous tissue samples. However, expression of the Rheb gene was upregulated in the tumor samples carrying the intron 2 (+24 G→T) alteration. Association between the gene expression and tissue protein levels was also analyzed for HIF1α in a subgroup of patients, and a high correlation was confirmed. Our results indicate that the LKB1 gene is frequently altered in RCC and may play a role in RCC progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cho E, Lindblad P, Adami HO. Kidney cancer. In: Adami HO, Hunter D, Trichopoulos D, editors. Textbook of cancer epidemiology. 2nd ed. New York: Oxford University Press; 2008.

    Google Scholar 

  2. Elfiky AA, Aziz SA, Conrad PJ, Siddiqu S, Hackl W, Maira M, et al. Characterization and targeting of phosphatidylinositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) in renal cell cancer. J Trans Med. 2011;9:133.

    Article  CAS  Google Scholar 

  3. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  PubMed Central  Google Scholar 

  4. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear cell renal cell carcinoma. Nat Genet. 2013;45:860–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hara K, Maruki Y, Long X, Yashino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177–89.

    Article  CAS  PubMed  Google Scholar 

  6. Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11:1457–66.

    Article  CAS  PubMed  Google Scholar 

  7. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, De Pinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway. Trends Biochem Sci. 2004;29:32–8.

    Article  PubMed  Google Scholar 

  9. Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5:566–71.

    Article  CAS  PubMed  Google Scholar 

  10. Katajisto P, Vallenius T, Vaahtomeri K, Ekman N, Udd L, Tiainen M, et al. The LKB1 tumor suppressor kinase in human disease. Biochim Biophys Acta. 2007;1775:63–75.

    CAS  PubMed  Google Scholar 

  11. Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 2004;23:833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corradetti MN, Inoki K, Bardeesy N, De Pinho RA, Guan KL. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004;18:1533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science. 2001;293:1323–6.

    Article  CAS  PubMed  Google Scholar 

  14. Harris AL. Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  15. Baldewijns MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, vn Engeland M, de Bruiine AD, et al. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010;221:125–38.

    Article  CAS  PubMed  Google Scholar 

  16. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol. 2007;177:346–52.

    Article  PubMed  Google Scholar 

  17. Voss MH, Hakimi AA, Pham CG, Brannon AR, Chen YB, Cunha LF, et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res. 2014;20:1955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chism DD, Rathmell K. Seeing the forest fort he trees: kidney oncogenomes in relation to therapeutic outcomes. Clin Cancer Res. 2014;20:1721–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tigli H, Seven D, Tunc M, Sanli O, Basaran S, Ulutin T, et al. LKB1 mutations and their correlation with LKB1 and Rheb expression in bladder cancer. Mol Carcinog. 2013;52:660–5.

    Article  CAS  PubMed  Google Scholar 

  20. Onozato R, Kosaka T, Achiwa H, Kuwano H, Takahashi T, Yatabe Y, et al. LKB1 gene mutations in Japanese lung cancer patients. Cancer Sci. 2007;98:1747–51.

    Article  CAS  PubMed  Google Scholar 

  21. Kenanli E, Karaman E, Enver O, Ulutin T, Buyru N. Genetic alterations of the LKB1 gene in head and neck cancer. DNA Cell Biol. 2010;29:735–8.

    Article  CAS  PubMed  Google Scholar 

  22. Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58:2087–90.

    CAS  PubMed  Google Scholar 

  23. Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkanken M, Salovaara R, et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol. 1999;154:677–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sakamoto K, McCarthy A, Smith D, Gren KA, Garahame Hardie D, Ashworth A, et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Granot Z, Swisa A, Magenheim J, Stolovich-Rein M, Fujimoto W, Manduchi E, et al. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab. 2009;10:296–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumor suppressor LKB1 in clear cell renal carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim W, Olschwang S, Keller JJ, Westerman AM, Menko FH, Bardman LA, et al. Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology. 2004;126:1788–94.

    Article  CAS  PubMed  Google Scholar 

  28. Kline ER, Muller S, Pan L, Tighiouart M, Chen ZG, Marcus AI. Localization-specific LKB1 loss in head and neck squamous cell carcinoma metastasis. Head Neck. 2011;33:1501–12.

    Article  PubMed  Google Scholar 

  29. Launonen V. Mutations in the human LKB1/STK11 gene. Hum Mutat. 2005;26:291–7.

    Article  CAS  PubMed  Google Scholar 

  30. Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.

    Article  CAS  PubMed  Google Scholar 

  31. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2:28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong SM, Kim KM, Kim SY, Shin MS, Na EY, Lee SH, et al. Frequent somatic mutations in serine/threonine kinase 11/Peutz-Jeghers syndrome gene in left-sided colon cancer. Cancer Res. 1998;58:3787–90.

    CAS  PubMed  Google Scholar 

  33. Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schulkowski M, et al. MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 2003;22:5102–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qui W, Schönleben F, Thaker HM, Goggins M, Su GH. A novel mutation of STK11/LKB1 gene leads to the loss of cell growth inhibition in head and neck squamous cell carcinoma. Oncogene. 2006;25:2937–42.

    Article  Google Scholar 

  36. Land SC, Tee AR. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 2007;282:20534–43.

    Article  CAS  PubMed  Google Scholar 

  37. Gromov PS, Madsen P, Tomerup N, Celis JE. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of Rheb. FEBS Lett. 1995;377:221–6.

    Article  CAS  PubMed  Google Scholar 

  38. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442:779–85.

    Article  CAS  PubMed  Google Scholar 

  39. Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61:5215–22.

    CAS  PubMed  Google Scholar 

  40. Turner KJ, Moore JW, Jones A, Taylor CF, Cuthbert-Heavens D, Hen C, et al. Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res. 2002;62:2957–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Research Fund of Istanbul University, Project No. T-845/0206200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Buyru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalniz, Z., Tigli, H., Tigli, H. et al. Novel mutations and role of the LKB1 gene as a tumor suppressor in renal cell carcinoma. Tumor Biol. 35, 12361–12368 (2014). https://doi.org/10.1007/s13277-014-2550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2550-4

Keywords

Navigation