Advertisement

Tumor Biology

, Volume 35, Issue 11, pp 10581–10589 | Cite as

SOCS6 is a selective suppressor of receptor tyrosine kinase signaling

  • Nuzhat N. Kabir
  • Jianmin Sun
  • Lars Rönnstrand
  • Julhash U. Kazi
Review

Abstract

The suppressors of cytokine signaling (SOCS) are well-known negative regulators of cytokine receptor signaling. SOCS6 is one of eight members of the SOCS family of proteins. Similar to other SOCS proteins, SOCS6 consists of an uncharacterized extended N-terminal region followed by an SH2 domain and a SOCS box. Unlike other SOCS proteins, SOCS6 is mainly involved in negative regulation of receptor tyrosine kinase signaling. SOCS6 is widely expressed in many tissues and is found to be downregulated in many cancers including colorectal cancer, gastric cancer, lung cancer, ovarian cancer, stomach cancer, thyroid cancer, hepatocellular carcinoma, and pancreatic cancer. SOCS6 is involved in negative regulation of receptor signaling by increasing degradation mediated by ubiquitination of receptors or substrate proteins and induces apoptosis by targeting mitochondrial proteins. Therefore, SOCS6 turns out as an important regulator of survival signaling and its activity is required for controlling receptor tyrosine kinase signaling.

Keywords

SOCS FLT3 KIT INSR SCF Insulin FL 

Notes

Acknowledgments

This research was funded by the Stiftelsen Olle Engkvist Byggmästare, Kungliga Fysiografiska Sällskapet i Lund, Ollie and Elof Ericssons Stiftelse and Stiftelsen Lars Hiertas Minne.

Conflicts of interest

None

References

  1. 1.
    Kazi JU, Kabir NN, Flores-Morales A, Rönnstrand L. SOCS proteins in regulation of receptor tyrosine kinase signaling. Cell Mol Life Sci. 2014;71:3297–310.Google Scholar
  2. 2.
    Kazi JU, Rönnstrand L. Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Mol Oncol. 2013;7:693–703.PubMedCrossRefGoogle Scholar
  3. 3.
    Kazi JU, Sun J, Phung B, Zadjali F, Flores-Morales A, Rönnstrand L. Suppressor of cytokine signaling 6 (SOCS6) negatively regulates Flt3 signal transduction through direct binding to phosphorylated tyrosines 591 and 919 of Flt3. J Biol Chem. 2012;287:36509–17.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Zadjali F, Pike AC, Vesterlund M, Sun J, Wu C, Li SS, et al. Structural basis for c-Kit inhibition by the suppressor of cytokine signaling 6 (SOCS6) ubiquitin ligase. J Biol Chem. 2011;286:480–90.Google Scholar
  5. 5.
    Bayle J, Letard S, Frank R, Dubreuil P, De Sepulveda P. Suppressor of cytokine signaling 6 associates with Kit and regulates Kit receptor signaling. J Biol Chem. 2004;279:12249–59.Google Scholar
  6. 6.
    Matuoka K, Miki H, Takahashi K, Takenawa T. A novel ligand for an SH3 domain of the adaptor protein Nck bears an SH2 domain and nuclear signaling motifs. Biochem Biophys Res Commun. 1997;239:488–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Martens N, Wery M, Wang P, Braet F, Gertler A, Hooghe R, et al. The suppressor of cytokine signaling (SOCS)-7 interacts with the actin cytoskeleton through vinexin. Exp Cell Res. 2004;298:239–48.PubMedCrossRefGoogle Scholar
  8. 8.
    De Sepulveda P, Okkenhaug K, Rose JL, Hawley RG, Dubreuil P, Rottapel R. Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J. 1999;18:904–15.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002;277:42394–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Gui Y, Yeganeh M, Ramanathan S, Leblanc C, Pomerleau V, Ferbeyre G, et al. SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J Hepatol. 2011;55:1300–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Hafizi S, Alindri F, Karlsson R, Dahlbäck B. Interaction of Axl receptor tyrosine kinase with C1-TEN, a novel C1 domain-containing protein with homology to tensin. Biochem Biophys Res Commun. 2002;299:793–800.PubMedCrossRefGoogle Scholar
  12. 12.
    Dey BR, Spence SL, Nissley P, Furlanetto RW. Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem. 1998;273:24095–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Xia L, Wang L, Chung AS, Ivanov SS, Ling MY, Dragoi AM, et al. Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation. J Biol Chem. 2002;277:30716–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Ben-Zvi T, Yayon A, Gertler A, Monsonego-Ornan E. Suppressors of cytokine signaling (SOCS) 1 and SOCS3 interact with and modulate fibroblast growth factor receptor signaling. J Cell Sci. 2006;119:380–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Sasi W, Jiang WG, Sharma A, Mokbel K. Higher expression levels of SOCS 1,3,4,7 are associated with earlier tumour stage and better clinical outcome in human breast cancer. BMC Cancer. 2010;10:178.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kile BT, Alexander WS. The suppressors of cytokine signalling (SOCS). Cell Mol Life Sci. 2001;58:1627–35.PubMedCrossRefGoogle Scholar
  17. 17.
    Li L, Gronning LM, Anderson PO, Li S, Edvardsen K, Johnston J, et al. Insulin induces SOCS-6 expression and its binding to the p85 monomer of phosphoinositide 3-kinase, resulting in improvement in glucose metabolism. J Biol Chem. 2004;279:34107–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Lai RH, Hsiao YW, Wang MJ, Lin HY, Wu CW, Chi CW, et al. SOCS6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett. 2010;288:75–85.PubMedCrossRefGoogle Scholar
  19. 19.
    Lin HY, Lai RH, Lin ST, Lin RC, Wang MJ, Lin CC, et al. Suppressor of cytokine signaling 6 (SOCS6) promotes mitochondrial fission via regulating DRP1 translocation. Cell Death Differ. 2013;20:139–53.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Masuhara M, Sakamoto H, Matsumoto A, Suzuki R, Yasukawa H, Mitsui K, et al. Cloning and characterization of novel CIS family genes. Biochem Biophys Res Commun. 1997;239:439–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Ram PA, Waxman DJ. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem. 1999;274:35553–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Helman D, Sandowski Y, Cohen Y, Matsumoto A, Yoshimura A, Merchav S, et al. Cytokine-inducible SH2 protein (CIS3) and JAK2 binding protein (JAB) abolish prolactin receptor-mediated STAT5 signaling. FEBS Lett. 1998;441:287–91.PubMedCrossRefGoogle Scholar
  23. 23.
    Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M, et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 1999;18:375–85.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lai RH, Wang MJ, Yang SH, Chen JY. Genomic organization and functional characterization of the promoter for the human suppressor of cytokine signaling 6 gene. Gene. 2009;448:64–73.PubMedCrossRefGoogle Scholar
  25. 25.
    Dowton SB, Hing AV, Sheen-Kaniecki V, Watson MS. Chromosome 18q22.2 → qter deletion and a congenital anomaly syndrome with multiple vertebral segmentation defects. J Med Genet. 1997;34:414–7.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Yoon S, Yi YS, Kim SS, Kim JH, Park WS, Nam SW. SOCS5 and SOCS6 have similar expression patterns in normal and cancer tissues. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2012;33:215–21.CrossRefGoogle Scholar
  27. 27.
    Hwang MN, Ha TH, Park J, Shim J, Lee H, Kim YN, et al. Increased SOCS6 stability with PMA requires its N-terminal region and the Erk pathway via PKC delta activation. Biochem Biophys Res Commun. 2007;354:184–9.Google Scholar
  28. 28.
    Kazi JU, Kabir NN, Rönnstrand L. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol. 2013;30:757.PubMedCrossRefGoogle Scholar
  29. 29.
    Kazi JU. The mechanism of protein kinase C regulation. Front Biol. 2011;6:328–36.Google Scholar
  30. 30.
    Kazi JU, Kim CR, Soh JW. Subcellular localization of diacylglycerol-responsive protein kinase C isoforms in HeLa cells. Bull Kor Chem Soc. 2009;30:1981–4.Google Scholar
  31. 31.
    Kazi JU, Soh JW. Role of regulatory domain mutants of PKC isoforms in c-fos induction. Bull Kor Chem Soc. 2008;29:252–4.CrossRefGoogle Scholar
  32. 32.
    Kazi JU, Soh JW. Induction of the nuclear proto-oncogene c-fos by the phorbol ester TPA and v-H-Ras. Mol Cells. 2008;26:462–7.PubMedGoogle Scholar
  33. 33.
    Piao L, Park J, Li Y, Shin S, Shin S, Kong G, et al. SOCS3 and SOCS6 are required for the risperidone-mediated inhibition of insulin and leptin signaling in neuroblastoma cells. Int J Mol Med. 2014;33:1364–70.Google Scholar
  34. 34.
    Storojeva I, Boulay JL, Ballabeni P, Buess M, Terracciano L, Laffer U, et al. Prognostic and predictive relevance of DNAM-1, SOCS6 and CADH-7 genes on chromosome 18q in colorectal cancer. Oncology. 2005;68:246–55.PubMedCrossRefGoogle Scholar
  35. 35.
    Sriram KB, Larsen JE, Savarimuthu Francis SM, Wright CM, Clarke BE, Duhig EE, et al. Array-comparative genomic hybridization reveals loss of SOCS6 is associated with poor prognosis in primary lung squamous cell carcinoma. PLoS One. 2012;7:e30398.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Qiu X, Zheng J, Guo X, Gao X, Liu H, Tu Y, et al. Reduced expression of SOCS2 and SOCS6 in hepatocellular carcinoma correlates with aggressive tumor progression and poor prognosis. Mol Cell Biochem. 2013;378:99–106.PubMedCrossRefGoogle Scholar
  37. 37.
    Wu K, Hu G, He X, Zhou P, Li J, He B, et al. MicroRNA-424-5p suppresses the expression of SOCS6 in pancreatic cancer. Pathol Oncol Res POR. 2013;19:739–48.CrossRefGoogle Scholar
  38. 38.
    Tanaka T, Arai M, Jiang X, Sugaya S, Kanda T, Fujii K, et al. Downregulation of microRNA-431 by human interferon-beta inhibits viability of medulloblastoma and glioblastoma cells via upregulation of SOCS6. Int J Oncol. 2014;44:1685–90.Google Scholar
  39. 39.
    Wu Q, Luo G, Yang Z, Zhu F, An Y, Shi Y, et al. Mir-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells. FEBS Lett. 2014;588:2055–62.Google Scholar
  40. 40.
    Mooney RA, Senn J, Cameron S, Inamdar N, Boivin LM, Shang Y, et al. Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem. 2001;276:25889–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220:T1–23.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, et al. SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol. 2002;22:4567–78.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Banks AS, Li J, McKeag L, Hribal ML, Kashiwada M, Accili D, et al. Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest. 2005;115:2462–71.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Ueki K, Fruman DA, Yballe CM, Fasshauer M, Klein J, Asano T, et al. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem. 2003;278:48453–66.PubMedCrossRefGoogle Scholar
  45. 45.
    Ueki K, Fruman DA, Brachmann SM, Tseng YH, Cantley LC, Kahn CR. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol Cell Biol. 2002;22:965–77.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Kabir NN, Kazi JU. Grb10 is a dual regulator of receptor tyrosine kinase signaling. Mol Biol Rep. 2014;41:1985–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-Kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem. 1997;272:10248–53.Google Scholar
  48. 48.
    Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem. 2001;276:4872–8.Google Scholar
  49. 49.
    Lennartsson J, Rönnstrand L. Stem cell factor receptor/c-Kit: from basic science to clinical implications. Physiol Rev. 2012;92:1619–49.Google Scholar
  50. 50.
    Kazi JU, Agarwal S, Sun J, Bracco E, Rönnstrand L. Src-like-adaptor protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. J Cell Sci. 2014;127:653–62.Google Scholar
  51. 51.
    Sun J, Mohlin S, Lundby A, Kazi JU, Hellman U, Påhlman S, et al. The PI3-kinase isoform p110delta is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner. Oncogene. 2013. doi: 10.1038/onc.2013.479.
  52. 52.
    Kazi JU, Vaapil M, Agarwal S, Bracco E, Påhlman S, Rönnstrand L. The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cell Signal. 2013;25:1852–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Kazi JU, Kabir NN, Soh JW. Bioinformatic prediction and analysis of eukaryotic protein kinases in the rat genome. Gene. 2008;410:147–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Kabir NN, Rönnstrand L, Kazi JU. Flt3 mutations in patients with childhood acute lymphoblastic leukemia (ALL). Med Oncol. 2013;30:462.Google Scholar
  55. 55.
    Ben-Yair L, Slaaby R, Herman A, Cohen Y, Biener E, Moran N, et al. Preparation and expression of biologically active prolactin and growth hormone receptors and suppressor of cytokine signaling proteins 1, 2, 3, and 6 tagged with cyan and yellow fluorescent proteins. Protein Expr Purif. 2002;25:456–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Hwang MN, Min CH, Kim HS, Lee H, Yoon KA, Park SY, et al. The nuclear localization of SOCS6 requires the N-terminal region and negatively regulates Stat3 protein levels. Biochem Biophys Res Commun. 2007;360:333–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Bayle J, Lopez S, Iwai K, Dubreuil P, De Sepulveda P. The E3 ubiquitin ligase HOIL-1 induces the polyubiquitination and degradation of SOCS6 associated proteins. FEBS Lett. 2006;580:2609–14.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Nuzhat N. Kabir
    • 1
  • Jianmin Sun
    • 2
    • 3
  • Lars Rönnstrand
    • 2
    • 3
  • Julhash U. Kazi
    • 1
    • 2
    • 3
  1. 1.Laboratory of Computational Biochemistry, KN Biomedical Research InstituteBarisalBangladesh
  2. 2.Division of Translational Cancer ResearchLund UniversityLundSweden
  3. 3.Lund Stem Cell CenterLund UniversityLundSweden

Personalised recommendations