Tumor Biology

, Volume 35, Issue 12, pp 12299–12304 | Cite as

Upregulation of miR-132 expression in glioma and its clinical significance

  • Qiang Liu
  • Fan Liao
  • Hao Wu
  • Tao Cai
  • Liang Yang
  • Zhi-fei Wang
  • Ran Zou
Research Article


miR-132 was found to be overexpressed in glioma; however, its clinical significance has not been investigated. In the present study, we evaluated the association between miR-132 and clinicopathological parameters and prognosis. Quantitative real-time PCR was used to analyze the expression of miR-132 in 113 cases of glioma and 36 cases of normal brain tissues. The association of miR-132 expression with clinicopathological factors and prognosis of glioma patients were analyzed. The expression levels of miR-132 were significantly higher in glioma tissues than that in normal brain tissues (mean ± SD, 4.448 ± 1.857 vs. 1.936 ± 0.543; P < 0.001). The miR-132 expression level was classified as high or low in relation to the median value. High expression of miR-132 was found to significantly correlate with KPS score (P = 0.001); extent of resection (P = 0.009), and WHO grade (P < 0.001). Kaplan–Meier analysis with the log-rank test indicated that high miR-132 expression had a significant impact on overall survival (17.3 vs. 56.2 %; P = 0.04) and progression-free survival (11.7 vs. 50.5 %; P = 0.012). In conclusion, this study identified high miR-132 expression as a biomarker of poor prognosis in patients diagnosed with glioma.


miR-132 Glioma Prognosis Biomarker 


  1. 1.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.PubMedCrossRefGoogle Scholar
  2. 2.
    McCarthy BJ, Shibui S, Kayama T, Miyaoka E, Narita Y, Murakami M, et al. Primary CNS germ cell tumors in Japan and the United States: an analysis of 4 tumor registries. Neurol Oncol. 2012;14:1194–200.CrossRefGoogle Scholar
  3. 3.
    D’Abaco GM, Kaye AH. Integrins: molecular determinants of glioma invasion. J Clin Neurosci. 2007;14:1041–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70:217–28.PubMedCrossRefGoogle Scholar
  5. 5.
    See SJ, Gilbert MR. Anaplastic astrocytoma: diagnosis, prognosis, and management. Semin Oncol. 2004;31:618–34.PubMedCrossRefGoogle Scholar
  6. 6.
    Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol. 2002;61:215–25. discussion 226–219.PubMedGoogle Scholar
  7. 7.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 2004;64:6892–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen CZ. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med. 2005;353:1768–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Magill ST, Cambronne XA, Luikart BW, Lioy DT, Leighton BH, Westbrook GL, et al. MicroRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci U S A. 2010;107:20382–7.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mulik S, Xu J, Reddy PB, Rajasagi NK, Gimenez F, Sharma S, et al. Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. Am J Pathol. 2012;181:525–34.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity. 2009;31:965–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, et al. DNA methylation silences miR-132 in prostate cancer. Oncogene. 2013;32:127–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Li S, Meng H, Zhou F, Zhai L, Zhang L, Gu F, et al. MicroRNA-132 is frequently down-regulated in ductal carcinoma in situ (DCIS) of breast and acts as a tumor suppressor by inhibiting cell proliferation. Pathol Res Pract. 2013;209:179–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu X, Yu H, Cai H, Wang Y. The expression and clinical significance of miR-132 in gastric cancer patients. Diagn Pathol. 2014;9:57.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Wei X, Tan C, Tang C, Ren G, Xiang T, Qiu Z, et al. Epigenetic repression of miR-132 expression by the hepatitis B virus x protein in hepatitis B virus-related hepatocellular carcinoma. Cell Signal. 2013;25:1037–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang J, Gao T, Tang J, Cai H, Lin L, Fu S. Loss of microRNA-132 predicts poor prognosis in patients with primary osteosarcoma. Mol Cell Biochem. 2013;381:9–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang B, Lu L, Zhang X, Ye W, Wu J, Xi Q and Zhang X. Hsa-miR-132 regulates apoptosis in non-small cell lung cancer independent of acetylcholinesterase. J Mol Neurosci 2013.Google Scholar
  20. 20.
    Zhang S, Hao J, Xie F, Hu X, Liu C, Tong J, et al. Downregulation of miR-132 by promoter methylation contributes to pancreatic cancer development. Carcinogenesis. 2011;32:1183–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, Dupre I, et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS One. 2011;6:e20600.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Nakazato Y. The 4th edition of WHO classification of tumours of the central nervous system published in 2007. No Shinkei Geka. 2008;36:473–91.PubMedGoogle Scholar
  23. 23.
    Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, et al. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20:492–8.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, et al. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun. 2011;406:518–23.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    You J, Li Y, Fang N, Liu B, Zu L, Chang R, et al. miR-132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2. PLoS One. 2014;9:e91827.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Qiang Liu
    • 1
  • Fan Liao
    • 1
  • Hao Wu
    • 1
  • Tao Cai
    • 1
  • Liang Yang
    • 1
  • Zhi-fei Wang
    • 1
  • Ran Zou
    • 2
  1. 1.Department of NeurosurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
  2. 2.Hospice Care CenterThe Tumor Hospital of Hunan ProvinceChangshaChina

Personalised recommendations