Skip to main content

Advertisement

Log in

C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion

  • Research Article
  • Published:
Tumor Biology

Abstract

Recently, more and more evidence are rapidly accumulating that long noncoding RNAs (lncRNAs) are involved in human tumorigenesis and misregulated in many cancers, including colon cancer. LncRNA could regulate essential pathways that contribute to tumor initiation and progression with their tissue specificity, which indicates that lncRNA would be valuable biomarkers and therapeutic targets. Colon cancer-associated transcript 1 (CCAT1) is a 2628 nucleotide-lncRNA and located in the vicinity of a well-known transcription factor c-Myc. CCAT1 has been found to be upregulated in many cancers, including gastric carcinoma and colonic adenoma-carcinoma. However, its roles in colon cancer are still not well documented and need to be investigated. In this study, we aim to investigate the prognostic value and biological function of CCAT1 and discover which factors may contribute to the deregulation of CCAT1 in colon cancer. Our results revealed that CCAT1 was significantly overexpressed in colon cancer tissues when compared with normal tissues, and its increased expression was correlated with patients’ clinical stage, lymph nodes metastasis, and survival time after surgery. Moreover, c-Myc could promote CCAT1 transcription by directly binding to its promoter region, and upregulation of CCAT1 expression in colon cancer cells promoted cell proliferation and invasion. These data suggest that c-Myc-activated lncRNA CCAT1 expression contribute to colon cancer tumorigenesis and the metastatic process and could predict the clinical outcome of colon cancer and be a potential target for lncRNA direct therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30. doi:10.3322/caac.21166.

    Article  Google Scholar 

  2. Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, et al. Activation of Ki-ras2 gene in human colon and lung carcinomas by two different point mutations. Nature. 1983;304(5926):507–13.

    Article  CAS  Google Scholar 

  3. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature. 1987;327(6120):298–303. doi:10.1038/327298a0.

    Article  CAS  Google Scholar 

  4. Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359(6392):235–7. doi:10.1038/359235a0.

    Article  CAS  Google Scholar 

  5. Wu WK, Law PT, Lee CW, Cho CH, Fan D, Wu K, et al. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis. 2011;32(3):247–53. doi:10.1093/carcin/bgq243.

    Article  CAS  Google Scholar 

  6. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. doi:10.1101/gr.152942.112.

    Article  CAS  Google Scholar 

  7. Fujiya M, Konishi H, Mohamed Kamel MK, Ueno N, Inaba Y, Moriichi K, et al. MicroRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene. 2013. doi:https://doi.org/10.1038/onc.2013.429.

    Article  PubMed  Google Scholar 

  8. Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, et al. MicroRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer. 2014;13(1):124. doi:10.1186/1476-4598-13-124.

    Article  Google Scholar 

  9. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8. doi:10.1038/nature11233.

    Article  CAS  Google Scholar 

  10. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi:10.1038/nrg2521.

    Article  CAS  Google Scholar 

  11. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi:10.1016/j.cell.2009.02.006.

    Article  CAS  Google Scholar 

  12. Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol. 2013;14(11):699–712. doi:10.1038/nrm3679.

    Article  CAS  Google Scholar 

  13. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81. doi:10.1016/j.cell.2011.03.014.

    Article  CAS  Google Scholar 

  14. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9. doi:10.1126/science.1231776.

    Article  CAS  Google Scholar 

  15. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108(12):2419–25. doi:10.1038/bjc.2013.233.

    Article  CAS  Google Scholar 

  16. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer. 2012;130(7):1598–606. doi:10.1002/ijc.26170.

    Article  CAS  Google Scholar 

  17. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–9. doi:10.1038/ng2022.

    Article  CAS  Google Scholar 

  18. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet. 2007;39(8):989–94. doi:10.1038/ng2089.

    Article  CAS  Google Scholar 

  19. Chen H, Xu J, Hong J, Tang R, Zhang X, Fang JY. Long noncoding RNA profiles identify five distinct molecular subtypes of colorectal cancer with clinical relevance. Mol Oncol. 2014. doi:https://doi.org/10.1016/j.molonc.2014.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhu YP, Bian XJ, Ye DW, Yao XD, Zhang SL, Dai B, et al. Long noncoding RNA expression signatures of bladder cancer revealed by microarray. Oncol Lett. 2014;7(4):1197–202. doi:10.3892/ol.2014.1843.

    Article  CAS  Google Scholar 

  21. Wu ZH, Wang XL, Tang HM, Jiang T, Chen J, Lu S, et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol Rep. 2014;32(1):395–402. doi:10.3892/or.2014.3186.

    Article  CAS  Google Scholar 

  22. Alaiyan B, Ilyayev N, Stojadinovic A, Izadjoo M, Roistacher M, Pavlov V, et al. Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer. 2013;13(1):196. doi:10.1186/1471-2407-13-196.

    Article  CAS  Google Scholar 

  23. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 2014;24(5):513–31. doi:10.1038/cr.2014.35.

    Article  CAS  Google Scholar 

  24. Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139(3):437–45. doi:10.1007/s00432-012-1324-x.

    Article  CAS  Google Scholar 

  25. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi:10.1016/j.cell.2010.06.040.

    Article  CAS  Google Scholar 

  26. Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer. 2013;12(1):131. doi:10.1186/1476-4598-12-131.

    Article  Google Scholar 

  27. Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298. doi:10.1038/cddis.2014.256.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (81172266 to ZNF), the Life Health Technology Foundation of Jiangsu province (BL2012031), and the Natural Science Foundation of Jiangsu province (BK2011859 to ZNF).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhining Fan.

Additional information

Xiaolu He and Xueming Tan contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Tan, X., Wang, X. et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 35, 12181–12188 (2014). https://doi.org/10.1007/s13277-014-2526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2526-4

Keywords

Navigation