Tumor Biology

, Volume 36, Issue 3, pp 1455–1462 | Cite as

PCAF-mediated Akt1 acetylation enhances the proliferation of human glioblastoma cells

  • Shuguang Zhang
  • Guan Sun
  • Zhimin Wang
  • Yi Wan
  • Jun Guo
  • Lei Shi
Research Article


Glioblastoma is the most aggressive malignant primary brain tumor in humans. The activation of PI3K/Akt1 signaling pathway is involved in the proliferation of glioblastoma; however, the underlying mechanism of Akt1 activation during the development of glioblastoma remains largely unclear. Recently, the modification of molecular molecules at protein level such as acetylation has been shown to be related to the function of these molecules. Thus, in our present studies, the acetylation of Akt1 molecule and its role in the proliferation of glioblastoma cells was explored. The results showed that Akt1 was markedly acetylated in glioblastoma cells compared to normal human astrocytes. Mechanistically, PCAF-mediated Akt1 acetylation enhanced Akt1 phosphorylation at both sites of Thr308 and Ser473 and further promoted the proliferation of glioblastoma cells. Together, these data implicate that, as a post-translational regulation, PCAF-mediated Akt1 acetylation plays an important role in the proliferation of human glioblastoma, suggesting a novel target for clinical application.


Glioblastoma Proliferation Akt1 Acetylation PCAF 



Cell counting kit-8


Short hairpin RNA


Whole-cell extract






Optical density


P300/CBP-associated factor


Homeobox A10


Dulbecco’s modified Eagle’s medium


Fetal bovine serum


Phosphate-buffered saline


Histone acetyltransferases



This work was supported by the China Natural Science Foundation (81000963, 81370062, and 81302196), Jiangsu Province’s 333 Talent Program (BRA2011046), Jiangsu Province “six personnel peak” funded projects (2013-WSN-028), Jiangsu Province’s Natural Science Foundation (BK2012670), Medical Research Foundation by Jiangsu Province Health Department (YG201301 and Z201318), the Clinical Technology Development of Jiangsu University (JLY20120053), the Kunshan Social Development Foundation (KS1006, KS1009), and the Suzhou Social Development Foundation (SYS201063).


  1. 1.
    Liang Q, Ma C, Zhao Y, Gao G, Ma J. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma. PLoS One. 2013;8:e84723.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hottinger AF, Stupp R, Homicsko K. Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer. 2014;33:32–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, et al. Microrna-155 promotes glioma cell proliferation via the regulation of MXI1. PLoS One. 2013;8:e83055.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Qiu W, Zhang Y, Liu X, Zhou J, Li Y, Zhou Y, et al. Sublytic C5b-9 complexes induce proliferative changes of glomerular mesangial cells in rat Thy-1 nephritis through TRAF6-mediated PI3K-dependent Akt1 activation. J Pathol. 2012;226:619–32.CrossRefPubMedGoogle Scholar
  5. 5.
    Hu P, Li B, Zhang W, Li Y, Li G, Jiang X, et al. Acsdkp regulates cell proliferation through the PI3KCA/Akt signaling pathway. PLoS One. 2013;8:e79321.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brader S, Eccles SA. Phosphoinositide 3-kinase signalling pathways in tumor progression, invasion and angiogenesis. Tumori. 2004;90:2–8.PubMedGoogle Scholar
  7. 7.
    Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS One. 2010;19:e9646.CrossRefGoogle Scholar
  8. 8.
    Al-Khalili L, Bouzakri K, Glund S, Lonnqvist F, Koistinen HA, Krook A. Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol Endocrinol. 2006;20:3364–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Dudley A, Sater M, Le PU, Trinh G, Sadr MS, Bergeron J, Deleavey GF, Bedell B, Damha MJ, Petrecca K. DRR regulates AKT activation to drive brain cancer invasion. Oncogene 2013.Google Scholar
  10. 10.
    Wu Z, Wang G, Xu S, Li Y, Tian Y, Niu H, et al. Effects of tetrandrine on glioma cell malignant phenotype via inhibition of ADAM17. Tumour Biol. 2014;35:2205–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, et al. Systematic functional prioritization of protein posttranslational modifications. Cell. 2012;150:413–25.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell. 2013;51:283–96.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Qiu W, Zhou J, Zhu G, Zhao D, He F, Zhang J, et al. Sublytic C5b-9 triggers glomerular mesangial cell apoptosis via XAF1 gene activation mediated by p300-dependent IRF-1 acetylation. Cell Death Dis. 2014;5:e1176.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yan J, Li Q, Mao AP, Hu MM, Shu HB. TRIM4 modulates type I interferon induction and cellular antiviral response by targeting RIG-I for K63-linked ubiquitination. J Mol Cell Biol. 2014;6:154–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Pejanovic N, Hochrainer K, Liu T, Aerne BL, Soares MP, Anrather J. Regulation of nuclear factor kappab (NF-kappab) transcriptional activity via p65 acetylation by the chaperonin containing TCP1 (CCT). PLoS One. 2012;7:e42020.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li T, Diner BA, Chen J, Cristea IM. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci U S A. 2012;109:10558–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xie J, Peng M, Guillemette S, Quan S, Maniatis S, Wu Y, et al. FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response. PLoS Genet. 2012;8:e1002786.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Eckner R. p53-dependent growth arrest and induction of p21: a critical role for PCAF-mediated histone acetylation. Cell Cycle. 2012;11:2591.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, et al. Restricted mitochondrial protein acetylation initiates mitochondrial autophagy. J Cell Sci. 2013;126:4843–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Netherland C, Pickle T, Sinensky MS, Thewke DP. Stimulation of Akt poly-ubiquitination and proteasomal degradation in P388D1 cells by 7-ketocholesterol and 25-hydroxycholesterol. Arch Biochem Biophys. 2009;487:54–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhao J, Gong AY, Zhou R, Liu J, Eischeid AN, Chen XM. Downregulation of PCAF by miR-181a/b provides feedback regulation to TNF-alpha-induced transcription of proinflammatory genes in liver epithelial cells. J Immunol. 2012;188:1266–74.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ. The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle. 2012;11:2458–66.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ge X, Jin Q, Zhang F, Yan T, Zhai Q. PCAF acetylates {beta}-catenin and improves its stability. Mol Biol Cell. 2009;20:419–27.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24:10826–34.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhu LH, Sun LH, Hu YL, Jiang Y, Liu HY, Shen XY, et al. PCAF impairs endometrial receptivity and embryo implantation by down-regulating beta3-integrin expression via HOXA10 acetylation. J Clin Endocrinol Metab. 2013;98:4417–28.CrossRefPubMedGoogle Scholar
  27. 27.
    Malatesta M, Steinhauer C, Mohammad F, Pandey DP, Squatrito M, Helin K. Histone acetyltransferase PCAF is required for Hedgehog-Gli-dependent transcription and cancer cell proliferation. Cancer Res. 2013;73:6323–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51:506–18.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY, et al. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer. 2012;12:492.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wang J, Zu J, Xu G, Zhao W, Jinglong Y. Inhibition of focal adhesion kinase induces apoptosis in human osteosarcoma SAOS-2 cells. Tumour Biol. 2014;35:1551–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang T, Qiu H, Bao W, Li B, Lu C, Du G, et al. Epigenetic inactivation of EFEMP1 is associated with tumor suppressive function in endometrial carcinoma. PLoS One. 2013;8:e67458.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liang X, Li X, Chang J, Duan Y, Li Z. Properties and evaluation of quaternized chitosan/lipid cation polymeric liposomes for cancer-targeted gene delivery. Langmuir. 2013;29:8683–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Perrone S, Usai M, Lazzari P, Tucker SJ, Wallace HM, Zanda M. Efficient cell transfection with melamine-based gemini surfactants. Bioconjug Chem. 2013;24:176–87.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim HY, Hwang JY, Kim SW, Lee HJ, Yun HJ, Kim S, et al. The CXCR4 antagonist AMD3100 has dual effects on survival and proliferation of myeloma cells in vitro. Cancer Res Treat. 2010;42:225–34.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Magi S, Saeki Y, Kasamatsu M, Tashiro E, Imoto M. Chemical genomic-based pathway analyses for epidermal growth factor-mediated signaling in migrating cancer cells. PLoS One. 2014;9:e96776.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xiao W, Chen X, He M. Inhibition of the jagged/notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt, Src, p38MAPK and Wnt/betacatenin signaling pathways. Mol Med Rep 2014.Google Scholar
  37. 37.
    Hsu FT, Liu YC, Chiang IT, Liu RS, Wang HE, Lin WJ, Hwang JJ: Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-kappab signaling. Int J Oncol 2014.Google Scholar
  38. 38.
    Peng R, Jiang B, Ma J, Ma Z, Wan X, Liu H, et al. Forced downregulation of RACK1 inhibits glioma development by suppressing Src/Akt signaling activity. Oncol Rep. 2013;30:2195–202.PubMedGoogle Scholar
  39. 39.
    Zhang Z, Wu L, Wang J, Li G, Feng D, Zhang B, et al. Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis. PLoS One. 2014;9:e96283.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xue X, Wang X, Liu Y, Teng G, Wang Y, Zang X, Wang K, Zhang J, Xu Y, Wang J, Pan L. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFbeta-mediated epithelial to mesenchymal transition in human lung cancer cell line A549. Tumour Biol 2014.Google Scholar
  41. 41.
    Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M, et al. Helicobacter pylori CagA activates NF-kappab by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 2009;10:1242–9.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Puttagunta R, Tedeschi A, Soria MG, Hervera A, Lindner R, Rathore KI, et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun. 2014;5:3527.CrossRefPubMedGoogle Scholar
  43. 43.
    Shi S, Lin J, Cai Y, Yu J, Hong H, Ji K, et al. Dimeric structure of p300/CBP associated factor. BMC Struct Biol. 2014;14:2.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Neurosurgery, The First People’s Hospital of KunshanJiangsu UniversitySuzhouPeople’s Republic of China
  2. 2.Department of NeurosurgeryFourth Affiliated Yancheng Hospital of Nantong UniversityYanchengPeople’s Republic of China
  3. 3.Department of Neurosurgery, Suzhou Kowloon HospitalShanghai Jiao Tong University School of MedicineSuzhouPeople’s Republic of China

Personalised recommendations