Tumor Biology

, Volume 35, Issue 12, pp 12139–12149 | Cite as

Licochalcone A inhibits the migration and invasion of human lung cancer cells via inactivation of the Akt signaling pathway with downregulation of MMP-1/-3 expression

  • Hung-Che Huang
  • Lo-Lin Tsai
  • Jen-Pi Tsai
  • Shu-Ching Hsieh
  • Shun-Fa Yang
  • Jung-Tsung Hsueh
  • Yi-Hsien Hsieh
Research Article

Abstract

Licochalcone A (LicA), a major phenolic constituent of Glycyrrhiza inflata, has been reported to exhibit anti-tumor, anti-inflammatory, and anti-metastatic properties in various cancer cells and animal models. The aim of this study was to determine the anti-tumor effects of LicA on lung cancer cells. The results indicated that LicA exhibited effective inhibition of cell migration and invasion of A549 and H460 cells under non-cytotoxic concentrations. Furthermore, LicA was also found to significantly inhibit the proteins and messenger RNA (mRNA) expression of MMP-1 and MMP-3 in A549 cells. Moreover, treatment of A549 cells with LicA-inhibited activation of the phosphorylation of Akt and inhibition of Akt by LY294002 (PI3K inhibitor) or transfection with the constitutive active-Akt (CA-Akt) expression vector significantly abolished the LicA-inhibited migration and invasion through activation of the Akt pathway. Further mechanistic studies revealed that LicA inhibits Akt signaling pathways and downstream transcription factors Sp1 expression. These findings imply a critical role for Akt inhibition in the LicA-inhibited migration and invasion of lung cancer cells. Thus, LicA might be used as an anti-invasive agent in the treatment of lung cancer.

Keywords

Lung cancer cells LicA Migration Invasion MMP-1 MMP-3 Sp1 

Notes

Acknowledgments

This work was supported by grants from Chung Shan Medical University and Changhua Christian Hospital, Changhua, Taiwan (CSMU-CCH-102-05) and National Science Council, Taiwan (NSC 101-2313-B-040-001).

Conflicts of interest

None

References

  1. 1.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Song PM, Zhang Y, He YF, Bao HM, Luo JH, et al. Bioinformatics analysis of metastasis-related proteins in hepatocellular carcinoma. World J Gastroenterol. 2008;14:5816–22.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Tan W, Lu J, Huang M, Li Y, Chen M, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med. 2011;6:27.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Meiyanto E, Hermawan A, Anindyajati. Natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian Pac J Cancer Prev. 2012;13:427–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Tryggvason K, Hoyhtya M, Pyke C. Type IV collagenases in invasive tumors. Breast Cancer Res Treat. 1993;24:209–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Huntington JT, Shields JM, Der CJ, Wyatt CA, Benbow U, et al. Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem. 2004;279:33168–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Hirata H, Naito K, Yoshihiro S, Matsuyama H, Suehiro Y, et al. A single nucleotide polymorphism in the matrix metalloproteinase-1 promoter is associated with conventional renal cell carcinoma. Int J Cancer. 2003;106:372–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Kemik O, Kemik AS, Sumer A, Dulger AC, Adas M, et al. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer. World J Gastroenterol. 2011;17:2109–12.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, et al. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer. 2012;12:583.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Behrens P, Rothe M, Florin A, Wellmann A, Wernert N. Invasive properties of serous human epithelial ovarian tumors are related to Ets-1, MMP-1 and MMP-9 expression. Int J Mol Med. 2001;8:149–54.PubMedGoogle Scholar
  11. 11.
    Fang S, Jin X, Wang R, Li Y, Guo W, et al. Polymorphisms in the MMP1 and MMP3 promoter and non-small cell lung carcinoma in North China. Carcinogenesis. 2005;26:481–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Petrella BL, Armstrong DA, Vincenti MP. CCAA T-enhancer-binding protein beta activation of MMP-1 gene expression in SW1353 cells: independent roles of extracellular signal-regulated and p90/ribosomal S6 kinases. J Cell Physiol. 2011;226:3349–54.Google Scholar
  13. 13.
    Brinckerhoff CE, Rutter JL, Benbow U. Interstitial collagenases as markers of tumor progression. Clin Cancer Res. 2000;6:4823–30.PubMedGoogle Scholar
  14. 14.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–46.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Husmann K, Arlt MJ, Muff R, Langsam B, Bertz J, et al. Matrix metalloproteinase 1 promotes tumor formation and lung metastasis in an intratibial injection osteosarcoma mouse model. Biochim Biophys Acta. 1832;2013:347–54.Google Scholar
  16. 16.
    Gonzalez-Arriaga P, Pascual T, Garcia-Alvarez A, Fernandez-Somoano A, Lopez-Cima MF, et al. Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer. 2012;12:121.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol. 2006;46:167–92.PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang J, Yuan X, Zhao H, Yan X, Sun X, et al. Licochalcone A inhibiting proliferation of bladder cancer T24 cells by inducing reactive oxygen species production. Biomed Mater Eng. 2014;24:1019–25.PubMedGoogle Scholar
  19. 19.
    Chu X, Ci X, Wei M, Yang X, Cao Q, et al. Licochalcone a inhibits lipopolysaccharide-induced inflammatory response in vitro and in vivo. J Agric Food Chem. 2012;60:3947–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Xiao XY, Hao M, Yang XY, Ba Q, Li M, et al. Licochalcone A inhibits growth of gastric cancer cells by arresting cell cycle progression and inducing apoptosis. Cancer Lett. 2011;302:69–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim YH, Shin EK, Kim DH, Lee HH, Park JH, et al. Antiangiogenic effect of licochalcone A. Biochem Pharmacol. 2010;80:1152–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai JP, Hsiao PC, Yang SF, Hsieh SC, Bau DT, et al. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-kappaB mediated urokinase plasminogen activator expression. PLoS One. 2014;9:e86537.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Green JA, Elkington PT, Pennington CJ, Roncaroli F, Dholakia S, et al. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and activator protein-1-dependent monocyte networks. J Immunol. 2010;184:6492–503.PubMedCrossRefGoogle Scholar
  24. 24.
    Lee YR, Noh EM, Han JH, Kim JM, Hwang JK, et al. Brazilin inhibits UVB-induced MMP-1/3 expressions and secretions by suppressing the NF-kappaB pathway in human dermal fibroblasts. Eur J Pharmacol. 2012;674:80–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferrari MM, Rossi G, Biondi ML, Vigano P, Dell'utri C, et al. Type I collagen and matrix metalloproteinase 1, 3 and 9 gene polymorphisms in the predisposition to pelvic organ prolapse. Arch Gynecol Obstet. 2012;285:1581–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Dempke WC, Suto T, Reck M. Targeted therapies for non-small cell lung cancer. Lung Cancer. 2010;67:257–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Pandey M, Mathew A, Nair MK. Global perspective of tobacco habits and lung cancer: a lesson for third world countries. Eur J Cancer Prev. 1999;8:271–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Spira A, Ettinger DS. Multidisciplinary management of lung cancer. N Engl J Med. 2004;350:379–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Sarkar FH, Li YW. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin. 2007;28:1305–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev. 2012;38:76–87.PubMedCrossRefGoogle Scholar
  31. 31.
    Chetty C, Rao JS, Lakka SS. Matrix metalloproteinase pharmacogenomics in non-small-cell lung carcinoma. Pharmacogenomics. 2011;12:535–46.PubMedCrossRefGoogle Scholar
  32. 32.
    Lopez-Otin C, Palavalli LH, Samuels Y. Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle. 2009;8:3657–62.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Li M, Xiao T, Zhang Y, Feng L, Lin D, et al. Prognostic significance of matrix metalloproteinase-1 levels in peripheral plasma and tumour tissues of lung cancer patients. Lung Cancer. 2010;69:341–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Jung JS, Ahn JH, Le TK, Kim DH, Kim HS. Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells. Neurochem Int. 2013;63:80–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee EJ, Kim SY, Hyun JW, Min SW, Kim DH, et al. Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chem Biol Interact. 2010;185:18–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284:67–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Shen H, Zeng G, Tang G, Cai X. Bi L, et al. Tumour Biol: Antimetastatic effects of licochalcone A on oral cancer via regulating metastasis-associated proteases; 2014.Google Scholar
  38. 38.
    Anand M, Van Meter TE, Fillmore HL. Epidermal growth factor induces matrix metalloproteinase-1 (MMP-1) expression and invasion in glioma cell lines via the MAPK pathway. J Neurooncol. 2011;104:679–87.PubMedCrossRefGoogle Scholar
  39. 39.
    Petrella BL, Armstrong DA, Vincenti MP. Interleukin-1 beta and transforming growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and invasiveness in A549 lung adenocarcinoma cells. Cancer Lett. 2012;325:220–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Armstrong DA, Phelps LN, Vincenti MP. CCAAT enhancer binding protein-beta regulates matrix metalloproteinase-1 expression in interleukin-1beta-stimulated A549 lung carcinoma cells. Mol Cancer Res. 2009;7:1517–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Raymond L, Eck S, Mollmark J, Hays E, Tomek I, et al. Interleukin-1 beta induction of matrix metalloproteinase-1 transcription in chondrocytes requires ERK-dependent activation of CCAAT enhancer-binding protein-beta. J Cell Physiol. 2006;207:683–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim JK, Shin EK, Park JH, Kim YH. Antitumor and antimetastatic effects of licochalcone A in mouse models. J Mol Med (Berl). 2010;88:829–38.PubMedCrossRefGoogle Scholar
  43. 43.
    Deacon K, Onion D, Kumari R, Watson SA, Knox AJ. Elevated SP1 transcription factor expression and activity drives basal and hypoxia-induced vascular endothelial growth factor (VEGF) expression in non-small cell lung cancer. J Biol Chem. 2012;287:39967–81.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Sze KM, Wong KL, Chu GK, Lee JM, Yau TO, et al. Loss of phosphatase and tensin homolog enhances cell invasion and migration through AKT/Sp-1 transcription factor/matrix metalloproteinase 2 activation in hepatocellular carcinoma and has clinicopathologic significance. Hepatology. 2011;53:1558–69.PubMedCrossRefGoogle Scholar
  45. 45.
    Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66:4991–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Tang SW, Yang TC, Lin WC, Chang WH, Wang CC, et al. Nicotinamide N-methyltransferase induces cellular invasion through activating matrix metalloproteinase-2 expression in clear cell renal cell carcinoma cells. Carcinogenesis. 2011;32:138–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Roy Choudhury S, Karmakar S, Banik NL, Ray SK. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification. Invest New Drugs. 2010;28:812–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Shiau RJ, Chen KY, Wen YD, Chuang CH, Yeh SL. Genistein and beta-carotene enhance the growth-inhibitory effect of trichostatin A in A549 cells. Eur J Nutr. 2010;49:19–25.PubMedCrossRefGoogle Scholar
  49. 49.
    Attoub S, Hassan AH, Vanhoecke B, Iratni R, Takahashi T, et al. Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. Eur J Pharmacol. 2011;651:18–25.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Hung-Che Huang
    • 1
  • Lo-Lin Tsai
    • 2
    • 3
  • Jen-Pi Tsai
    • 4
  • Shu-Ching Hsieh
    • 5
  • Shun-Fa Yang
    • 5
  • Jung-Tsung Hsueh
    • 6
  • Yi-Hsien Hsieh
    • 6
  1. 1.Visiting staff, Division of General thoracic Surgery, Department of surgeryChanghua Christian HospitalChanghuaTaiwan
  2. 2.School of DentistryChung Shan Medical UniversityTaichungTaiwan
  3. 3.Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
  4. 4.Department of NephrologyBuddhist Dalin Tzu Chi General HospitalChiayiTaiwan
  5. 5.Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
  6. 6.Institute of Biochemistry and Biotechnology, Department of Biochemistry, School of MedicineChung Shan Medical UniversityTaichungTaiwan

Personalised recommendations