Skip to main content

Advertisement

Log in

Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Because of direct stimulating immune system against disease, vaccination or active immunotherapy is preferable compared to passive immunotherapy. For this purpose, a newly designed chimeric peptide containing epitopes for both B and T cells from HER2 ECD subdomain III was proposed. To evaluate the effects of the active immunization, a discontinuous B cell epitope peptide was selected based on average antigenicity by bioinformatics analysis. The selected peptide was collinearly synthesized as a chimera with a T helper epitope from the protein sequence of measles virus fusion (208-302) using the GPSL linker. Three mice were immunized with the chimeric peptide. Reactive antibodies with HER2 protein in ELISA and immunofluorescence assays with no cross-reactivity were generated. The 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay indicated that the anti-peptide sera had inhibitory effects on proliferation of SK-BR-3 cells. Hence, the newly designed, discontinuous chimeric peptide representing B and T cell epitopes from subdomain III of HER2-ECD can form the basis for future vaccines design, where these data can be applied for monoclonal antibody production targeting the distinct epitope of HER2 receptor compared to the two broadly used anti-HER2 monoclonal antibodies, Herceptin and pertuzumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Correa I, Plunkett T. Update on HER-2 as a target for cancer therapy HER2/neu peptides as tumour vaccines for T cell recognition. Breast Cancer Res. 2001;3:399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Carter PJ. Potent antibody therapeutics by design. Nat Rev Immunol. 2006;6:343–57.

    CAS  PubMed  Google Scholar 

  3. Jager D, Knuth A. Antibodies and vaccines—hope or illusion? Breast. 2005;14:631–5.

    PubMed  Google Scholar 

  4. Milani A, Sangiolo D, Montemurro F, Aglietta M, et al. Active immunotherapy in HER2 overexpressing breast cancer: current status and future perspectives. Ann Oncol. 2013;24(7):1740–8.

    CAS  PubMed  Google Scholar 

  5. Garrett JT, Kaumaya P, Pei D, Dalbey R et al (2007). Peptide based B cell epitope vaccines targeting HER-2/Neu. Dissertation, Ohio State University

  6. Ladjemi MZ, Jacot W, Pèlegrin A, Navarro-Teulon I. Vaccination anti-HER2: l’avenir du ciblage immunologique de HER2? Review Article. Pathol Biol. 2011;59:173–82.

    CAS  PubMed  Google Scholar 

  7. Dakappagari NK, Pyles J, Parihar R, Carson WE, et al. Multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumour responses. J Immunol. 2003;170:4242–53.

    CAS  PubMed  Google Scholar 

  8. Milich DR. Synthetic T and B cell recognition sites: implications for vaccine development. Adv Immunol. 1989;45:195–282.

    CAS  PubMed  Google Scholar 

  9. Gangwara RS, Shil P, Sapkala GN, Khanc SA, et al. Induction of virus-specific neutralizing immune response against West Nile and Japanese encephalitis viruses by chimeric peptides representing T-helper and B-cell epitopes. Vir Res. 2012;163:40–50.

    Google Scholar 

  10. Miyako H, Kametani Y, Katano I, Ito R, et al. Antitumor effect of New HER2 peptide vaccination based on B cell epitope. Anticancer Res. 2011;31:3361–8.

    CAS  PubMed  Google Scholar 

  11. Mahdavi M, Mohabatkar H, Keyhanfar M, Jafarian Dehkordi A, et al. Linear and conformational B cell epitope prediction of HER 2 ECD-subdomain III by in silico methods. Asian Pac J Cancer Prev. 2012;13:3053–9.

    PubMed  Google Scholar 

  12. Mahdavi M, Keyhanfar M, Moreau V, Mohabatkar H, et al. In silico design of discontinuous peptides representative of B and T-cell epitopes from HER2-ECD as potential novel cancer peptide vaccines. Asian Pac J Cancer Prev. 2013;14:5973–81.

    Google Scholar 

  13. Jasinska J, Wagner S, Radauer C, Sedivy R, et al. Inhibition of tumour cell growth by antibodies induced after vaccination with peptides derived from the extracellular domain of HER-2/Neu. Int J Cancer. 2003;107:976–83.

    CAS  PubMed  Google Scholar 

  14. Zhang AL, Xue H, Ling XG, Gao Y, et al. Anti-HER-2 engineering antibody ChA21 inhibits growth and induces apoptosis of SK-OV-3 cells. J Exp Clin Cancer Res. 2010;29:23–32.

    PubMed  PubMed Central  Google Scholar 

  15. Kaumaya PTP, Kobs-Conrad S, DiGeorge AM, Stevens V. De novo engineering of protein immunogenic and antigenic determinants. In: Anantharamaiah GM, Basava C, editors. Peptides, design, synthesis & biological activity. Boston: Birkhauser; 1994. p. 133–64.

    Google Scholar 

  16. Kaumaya PTP. Synthetic peptide vaccines: dream or reality. In: Schneider CH, editor. Peptides in immunology. United Kingdom: Wiley; 1996. p. 117–48.

    Google Scholar 

  17. Partidos CD, Steward MW. Prediction and identification of a T cell epitope in the fusion protein of measles virus immunodominant in mice and humans. J Gen Virol. 1990;71:2099–105.

    CAS  PubMed  Google Scholar 

  18. Maupetit J, Derreumaux P, Tuffery P. PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res. 2009;37:498–503.

    Google Scholar 

  19. DeLano WL. The PyMOL molecular graphics system. San Carlos: DeLano Scientific; 2002.

    Google Scholar 

  20. Scott WRP, Hünenberger PH, Tironi IG, Mark AE, et al. The GROMOS biomolecular simulation program package. J Phys Chem A. 1999;103:3596–607.

    CAS  Google Scholar 

  21. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–23.

    CAS  PubMed  Google Scholar 

  22. Yokoyama WM (1995) Production of monoclonal antibodies. In: Current Protocols in Immunology, John Wiley & Sonc

  23. Tabll A, Khalil SB, El-Shenawy RM, Esmat G, et al. Establishment of hybrid cell lines producing monoclonal antibodies to a synthetic peptide from the E1 region of the hepatitis C virus. J Immunoass Immunochem. 2007;29:91–104.

    Google Scholar 

  24. Hornbeck P (1991) Enzyme-linked immunosorbent assays. In: Current Protocols in Immunology, John Wiley & Sonc

  25. Larry M, Lantz BJ, Fowlkes IS, Janis VG (2001) Preparation of cells and reagents for flow cytometry. In: Current Protocols in Immunology, Wiley

  26. Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276:172–4.

    CAS  PubMed  Google Scholar 

  27. Deulofeut H, Iglesias A, Mikael N, Bing DH, et al. Cellular recognition and HLA restriction of a midsequence HBsAg peptide in hepatitis B vaccinated individuals. Mol Immunol. 1993;30:941–8.

    CAS  PubMed  Google Scholar 

  28. Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, et al. Prevention of mammary tumours with a chimeric Her-2 B-cell epitope peptide vaccine. Cancer Res. 2000;60:3782–9.

    CAS  PubMed  Google Scholar 

  29. Wang B, Kaumaya PTP, Cohn DE. Immunization with synthetic VEGF peptides in ovarian cancer. Gyn Oncol. 2010;119:564–70.

    CAS  Google Scholar 

  30. Sundaram R, Lynch MP, Rawale SV, Sun Y, et al. De novo design of peptide immunogens that mimic the coiled coil region of human T-cell leukemia virus type-1 glycoprotein 21 transmembrane subunit for induction of native protein reactive neutralizing antibodies. J Biol Chem. 2004;279:141–51.

    Google Scholar 

  31. Boyer CM, Pusztai L, Wiener JR, Xu FJ, et al. Relative cytotoxic activity of immunotoxins reactive with different epitopes on the extracellular domain of the c-erbB-2 (HER-2/neu) gene product p185. Int J Cancer. 1999;82:525–31.

    CAS  PubMed  Google Scholar 

  32. Wang JN, Feng JN, Yua M, Xua M, et al. Structural analysis of the epitopes on erbB2 interacted with inhibitory or non-inhibitor monoclonal antibodies. Mol Immunol. 2004;40:963–9.

    CAS  PubMed  Google Scholar 

  33. Zhang W, Xiong Y, Zhao M, Zou H, et al. Prediction of conformational B-cell epitopes from 3D structures by random forests with a distance-based feature. BMC Bioinform. 2011;12:341–8.

    CAS  Google Scholar 

  34. Siyi H, Zhiqiang Z, Liangwei L, Liang C, et al. Epitope mapping and structural analysis of an anti-ErbB2 antibody A21: molecular basis for tumour inhibitory mechanism. Proteins. 2008;70:938–49.

    Google Scholar 

  35. Haro I, Gomara MJ. Design of synthetic peptidic constructs for the vaccine development against viral infections. Curr Protein Pept Sci. 2004;5:425–33.

    CAS  PubMed  Google Scholar 

  36. Aguilar RM, Talamantes FJ, Bustamante J, Muñoz J, Treviño LR, et al. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins. J Pept Sci. 2009;15:78–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jalali A, Sankian M, Tavakkol-Afshari J, Jaafari MR. Induction of tumour-specific immunity by multi-epitope rat HER2/neu-derived peptides encapsulated in LPD Nanoparticles. Nanomed Nanotech Biol Med. 2012;8:692–701.

    CAS  Google Scholar 

  38. Singh R, Rothman AL, Potts J, Guirakhoo F, et al. Sequential immunization with heterologous chimeric flaviviruses induces broad-spectrum cross-reactive CD8+ T cell responses. J Infect Dis. 2010;202:223–33.

    CAS  PubMed  Google Scholar 

  39. Axelsena TV, Holma A, Christiansena G, Birkelund S. Identification of the shortest AB-peptide generating highly specific antibodies against the C-terminal end of amyloid-B42. Vaccine. 2011;29:3260–9.

    Google Scholar 

  40. Ripoll DR. Conformational study of a peptide epitope shows large preferences for beta-turn conformations. Int J Pept Protein Res. 1992;40:575–81.

    CAS  PubMed  Google Scholar 

  41. Dakappagari NK, Lute KD, Rawale S, Steele JT, et al. Conformational HER-2/neu B-cell epitope peptide vaccine designed to incorporate two native disulfide bonds enhances tumour cell binding and antitumour activities. J Biol Chem. 2005;280:54–63.

    CAS  PubMed  Google Scholar 

  42. Chen SW, Van Regenmortel MH, Pellequer JL. Structure-activity relationships in peptide-antibody complexes: implications for epitope prediction and development of synthetic peptide vaccines. Curr Med Chem. 2009;16:953–9.

    PubMed  Google Scholar 

  43. Yarden Y, Peles E. Biochemical analysis of the ligand for the neu oncogenic receptor. Biochem. 1991;30:3543–50.

    CAS  Google Scholar 

  44. Lupu R, Colomer R, Zugmaier G, Sarup J, Shepard M, Slamon D, et al. Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Sci. 1990;249:1552–5.

    CAS  Google Scholar 

  45. Stancovski I, Hurwitz E, Leitner O, Ullrich A, Yarden Y, Sela M. Mechanistic aspects of the opposing effects of monoclonal antibodies to the ERBB2 receptor on tumor growth. Proc Natl Acad Sci USA. 1991;88:8691–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hurwitz E, Stancovski I, Sela M, Yarden Y. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci U S A. 1995;92:3353–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Courtenay-Luck NS, Epenetos AA, Moore R, Larche M, Pectasides D, Dhokia B, et al. Development of primary and secondary immune responses to mouse monoclonal antibodies used in the diagnosis and therapy of malignant neoplasms. Cancer Res. 1986;46(12 Pt 1):6489–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnaz Keyhanfar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, M., Keyhanfar, M., Jafarian, A. et al. Immunization with a novel chimeric peptide representing B and T cell epitopes from HER2 extracellular domain (HER2 ECD) for breast cancer. Tumor Biol. 35, 12049–12057 (2014). https://doi.org/10.1007/s13277-014-2503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2503-y

Keywords

Navigation