Advertisement

Tumor Biology

, Volume 35, Issue 12, pp 12031–12047 | Cite as

Elucidation of caveolin 1 both as a tumor suppressor and metastasis promoter in light of epigenetic modulators

  • Moonmoon Deb
  • Dipta Sengupta
  • Swayamsiddha Kar
  • Sandip Kumar Rath
  • Sabnam Parbin
  • Arunima Shilpi
  • Subhendu Roy
  • Gautam Das
  • Samir Kumar Patra
Research Article

Abstract

Caveolin-1 (CAV1) is an integral part of plasma membrane protein playing a vital role in breast cancer initiation and progression. CAV1 acts both as a tumor suppressor as well as an oncogene, and its activity is thus highly dependent on cellular environment. Keeping this fact in mind, the recent work is designed to reveal the role of CAV1 in inhibiting cancer cell progression in presence of epigenetic modulators like 5-aza-2′-deoxycytidine (AZA), trichostatin A (TSA), S-adenosyl methionine (SAM) and sulforaphane (SFN). Forced expression of CAV1 by AZA, TSA, and SFN is correlated to induction of apoptosis and inhibition of cell migration in breast cancer. In breast cancer along with promoter DNA methylation, other epigenetic mechanisms are also involved in CAV1 expression. These observations clearly provide a new scenario regarding the role of CAV1 in cancer and as a possible therapeutic target in breast cancer.

Keywords

Breast cancer Caveolin-1 DNA methylation AZA TSA SFN SAM 

References

  1. 1.
    Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2008;1785:182–206.PubMedGoogle Scholar
  2. 2.
    Patra SK, Bettuzzi S. Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: a role for raft proteins in cell transformation and cancer progression (review). Oncol Rep. 2007;17:1279–90.PubMedGoogle Scholar
  3. 3.
    Jacobson K, Mouritsen OG, Anderson RG. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol. 2007;9:7–14.PubMedCrossRefGoogle Scholar
  4. 4.
    Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Galbiati F, Razani B, Lisanti MP. Emerging themes in lipid rafts and caveolae. Cell. 2001;106:403–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Lin MI, Yu J, Murata T, Sessa WC. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res. 2007;67:2849–56.PubMedCrossRefGoogle Scholar
  7. 7.
    Engelman JA, Zhang X, Galbiati F, Volonte D, Sotgia F, Pestell RG, et al. Molecular genetics of the caveolin gene family: implications for human cancers, diabetes, alzheimer disease, and muscular dystrophy. Am J Hum Genet. 1998;63:1578–87.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Sci (New York, NY). 2001;293:2449–52.CrossRefGoogle Scholar
  9. 9.
    Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem. 2001;276:38121–38.PubMedCrossRefGoogle Scholar
  10. 10.
    Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res. 2004;94:1408–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Yu J, Bergaya S, Murata T, Alp IF, Bauer MP, Lin MI, et al. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest. 2006;116:1284–91.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zhao YY, Liu Y, Stan RV, Fan L, Gu Y, Dalton N, et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci U S A. 2002;99:11375–80.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Schubert W, Sotgia F, Cohen AW, Capozza F, Bonuccelli G, Bruno C, et al. Caveolin-1(−/−)- and caveolin-2(−/−)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol. 2007;170:316–33.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol. 2002;161:1647–56.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Chen ST, Lin SY, Yeh KT, Kuo SJ, Chan WL, Chu YP, et al. Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med. 2004;14:577–82.PubMedGoogle Scholar
  16. 16.
    Mossman D, Kim KT, Scott RJ. Demethylation by 5-aza-2′-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists. BMC Cancer. 2010;10:366.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Habold C, Poehlmann A, Bajbouj K, Hartig R, Korkmaz KS, Roessner A, et al. Trichostatin a causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis. J Cell Mol Med. 2008;12:607–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2013;62:11–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5:e11457.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Luo J, Li YN, Wang F, Zhang WM, Geng X. S-Adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int J Biol Sci. 2010;6:784–95.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Patra A, Deb M, Dahiya R, Patra SK. 5-Aza-2′-deoxycytidine stress response and apoptosis in prostate cancer. Clin Epigenetics. 2011;2:339–48.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Seervi M, Joseph J, Sobhan PK, Bhavya BC, Santhoshkumar TR. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models. Cell death & disease. 2011;2:e207.CrossRefGoogle Scholar
  24. 24.
    Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry. 2003;42:7967–75.PubMedCrossRefGoogle Scholar
  25. 25.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD, et al. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res. 2004;64:4277–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P, et al. Cpg island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene. 2013;32:4519–28.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Lin SY, Yeh KT, Chen WT, Chen HC, Chen ST, Chang JG. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res. 2004;24:1645–50.PubMedGoogle Scholar
  29. 29.
    Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate. 2001;46:249–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K, et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol. 2001;159:1635–43.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bachmann N, Haeusler J, Luedeke M, Kuefer R, Perner S, Assum G, et al. Expression changes of CAV1 and EZH2, located on 7q31 approximately q36, are rarely related to genomic alterations in primary prostate carcinoma. Cancer Genet Cytogenet. 2008;182:103–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Singh KP, Treas J, Tyagi T, Gao W. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells. Cancer Lett. 2012;316:62–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Mirza S, Sharma G, Pandya P, Ralhan R. Demethylating agent 5-aza-2-deoxycytidine enhances susceptibility of breast cancer cells to anticancer agents. Mol Cell Biochem. 2010;342:101–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim SH, Kang HJ, Na H, Lee MO. Trichostatin A enhances acetylation as well as protein stability of ERalpha through induction of p300 protein. Breast Cancer Res. 2010;12:R22.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Alao JP, Stavropoulou AV, Lam EW, Coombes RC, Vigushin DM. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells. Mol Cancer. 2006;5:8.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Galbiati F, Volonte D, Liu J, Capozza F, Frank PG, Zhu L, et al. Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell. 2001;12:2229–44.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Ostapkowicz A, Inai K, Smith L, Kreda S, Spychala J. Lipid rafts remodeling in estrogen receptor-negative breast cancer is reversed by histone deacetylase inhibitor. Mol Cancer Ther. 2006;5:238–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Guendel I, Carpio L, Pedati C, Schwartz A, Teal C, Kashanchi F, et al. Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One. 2010;5:e11379.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Du J, Zhou N, Liu H, Jiang F, Wang Y, Hu C, et al. Arsenic induces functional re-expression of estrogen receptor alpha by demethylation of DNA in estrogen receptor-negative human breast cancer. PLoS One. 2012;7:e35957.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Tone S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, et al. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res. 2007;313:3635–44.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Methods Mol Biol(Clifton, NJ). 2005;294:23–9.Google Scholar
  43. 43.
    Huang C, Qiu Z, Wang L, Peng Z, Jia Z, Logsdon CD, et al. A novel FoxM1-caveolin signaling pathway promotes pancreatic cancer invasion and metastasis. Cancer Res. 2012;72:655–65.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chanvorachote P, Chunhacha P. Caveolin-1 regulates endothelial adhesion of lung cancer cells via reactive oxygen species-dependent mechanism. PLoS One. 2013;8:e57466.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Nestl A, Von Stein OD, Zatloukal K, Thies WG, Herrlich P, Hofmann M, et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res. 2001;61:1569–77.PubMedGoogle Scholar
  46. 46.
    Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, et al. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene. 2012;31:884–96.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Tse EY, Ko FC, Tung EK, Chan LK, Lee TK, Ngan ES, et al. Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J Pathol. 2012;226:645–53.PubMedCrossRefGoogle Scholar
  48. 48.
    Ravid D, Maor S, Werner H, Liscovitch M. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene. 2005;24:1338–47.PubMedCrossRefGoogle Scholar
  49. 49.
    Belanger MM, Roussel E, Couet J. Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells. Anticancer Drugs. 2003;14:281–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, et al. Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer. 2004;91:959–65.PubMedCentralPubMedGoogle Scholar
  51. 51.
    Ha TK, Her NG, Lee MG, Ryu BK, Lee JH, Han J, et al. Caveolin-1 increases aerobic glycolysis in colorectal cancers by stimulating HMGA1-mediated GLUT3 transcription. Cancer Res. 2012;72:4097–109.PubMedCrossRefGoogle Scholar
  52. 52.
    Migneco G, Whitaker-Menezes D, Chiavarina B, Castello-Cros R, Pavlides S, Pestell RG, et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell cycle (Georgetown, Tex). 2010;9:2412–22.CrossRefGoogle Scholar
  53. 53.
    Zhou C, Qiu L, Sun Y, Healey S, Wanebo H, Kouttab N, et al. Inhibition of EGFR/PI3K/AKT cell survival pathway promotes TSA’s effect on cell death and migration in human ovarian cancer cells. Int J Oncol. 2006;29:269–78.PubMedGoogle Scholar
  54. 54.
    Gerlitz G, Bustin M. Efficient cell migration requires global chromatin condensation. J Cell Sci. 2010;123:2207–17.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Moonmoon Deb
    • 1
  • Dipta Sengupta
    • 1
  • Swayamsiddha Kar
    • 1
  • Sandip Kumar Rath
    • 1
  • Sabnam Parbin
    • 1
  • Arunima Shilpi
    • 1
  • Subhendu Roy
    • 2
  • Gautam Das
    • 3
  • Samir Kumar Patra
    • 1
  1. 1.Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life ScienceNational Institute of TechnologyRourkelaIndia
  2. 2.Drs. Tribedi & Roy Diagnostic LaboratoryKolkataIndia
  3. 3.Department of SurgeryCalcutta National Medical CollegeKolkataIndia

Personalised recommendations