Advertisement

Tumor Biology

, Volume 35, Issue 11, pp 11489–11497 | Cite as

Designing a recombinant chimeric construct contain MUC1 and HER2 extracellular domain for prediagnostic breast cancer

  • Elaheh Gheybi
  • Jafar Amani
  • Ali Hatef Salmanian
  • Farhad Mashayekhi
  • Samaneh Khodi
Research Article

Abstract

Breast cancer is the most common cancer among women in the world. One of the approaches for diagnosis of breast cancer is detection of its tumor-associated markers. Mucin 1 (MUC1), a tumor-associated antigen, is a transmembrane glycoprotein expressed by normal epithelial cells and overexpressed by carcinomas of epithelial origin. Also, human epidermal growth factor receptor-2 (HER2/erbB-2) belongs to the one of four members of tyrosin kinase type 1 family in which overexpression of HER2 is associated with malignancy in breast cancer. This study was aimed to bioinformatics analysis and designing a recombinant chimeric protein containing MUC1 and HER2 antigens to express in prokaryotic host (Escherichia coli) as breast cancer diagnosis tools. The immunogenic sequences of MUC1 and HER2 were extracted and fused together by a linker. The chimeric construct was analyzed by bioinformatics softwares. The optimization and purification, evaluation of the expression of chimeric protein was performed using Western blotting, ELISA, and immunohistochemistry. The results showed that the chimeric construct was stable and immunogenic domains were exposed. The pET-28a vector containing chimeric gene had high level of protein expression. The recombinant chimeric protein was confirmed using Western blotting, and it was investigated using ELISA and IHC. Then, the MUC1 and HER2 combined peptides can be used as coating antigens in ELISA for detection of antibodies against MUC1 or HER2 in human serum.

Keywords

Recombinant chimeric antigen MUC1-HER2 Breast cancer 

Notes

Conflicts of interest

None

References

  1. 1.
    Zhang B, Beeghly-Fadiel A, Long J, Zheng W. Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011;12(5):477–88. doi: 10.1016/S1470-2045(11)70076-6.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Castano Z, Tracy K, McAllister SS. The tumor macroenvironment and systemic regulation of breast cancer progression. Int J Dev Biol. 2011;55(7–9):889–97. doi: 10.1387/ijdb.113366zc.PubMedCrossRefGoogle Scholar
  3. 3.
    Moelans CB, de Weger RA, Van der Wall E, van Diest PJ. Current technologies for HER2 testing in breast cancer. Crit Rev Oncol/Hematol. 2011;80(3):380–92. doi: 10.1016/j.critrevonc.2010.12.005.CrossRefGoogle Scholar
  4. 4.
    Zoon CK, Starker EQ, Wilson AM, Emmert-Buck MR, Libutti SK, Tangrea MA. Current molecular diagnostics of breast cancer and the potential incorporation of microRNA. Expert Rev Mol Diagn. 2009;9(5):455–67. doi: 10.1586/erm.09.25.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Zhou J, Zhong Y. Breast cancer immunotherapy. Cell Mol Immunol. 2004;1(4):247–55.PubMedGoogle Scholar
  6. 6.
    Esteva FJ, Hortobagyi GN. Prognostic molecular markers in early breast cancer. Breast Cancer Res BCR. 2004;6(3):109–18. doi: 10.1186/bcr777.CrossRefGoogle Scholar
  7. 7.
    Mazor Y, Keydar I, Benhar I. Humanization and epitope mapping of the H23 anti-MUC1 monoclonal antibody reveals a dual epitope specificity. Mol Immunol. 2005;42(1):55–69. doi: 10.1016/j.molimm.2004.07.013.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenblum MG, Shawver LK, Marks JW, Brink J, Cheung L, Langton-Webster B. Recombinant immunotoxins directed against the c-erb-2/HER2/neu oncogene product: in vitro cytotoxicity, pharmacokinetics, and in vivo efficacy studies in xenograft models. Clin Cancer Res Off J Am Assoc Cancer Res. 1999;5(4):865–74.Google Scholar
  9. 9.
    Apostolopoulos V, Pietersz GA, Tsibanis A, Tsikkinis A, Drakaki H, Loveland BE, et al. Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res BCR. 2006;8(3):R27. doi: 10.1186/bcr1505.CrossRefGoogle Scholar
  10. 10.
    Wandall HH, Blixt O, Tarp MA, Pedersen JW, Bennett EP, Mandel U, et al. Cancer biomarkers defined by autoantibody signatures to aberrant O-glycopeptide epitopes. Cancer Res. 2010;70(4):1306–13. doi: 10.1158/0008-5472.CAN-09-2893.PubMedCrossRefGoogle Scholar
  11. 11.
    Kretschmer C, Sterner-Kock A, Siedentopf F, Schoenegg W, Schlag PM, Kemmner W. Identification of early molecular markers for breast cancer. Mol Cancer. 2011;10(1):15. doi: 10.1186/1476-4598-10-15.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Mushenkova N, Moiseeva E, Chaadaeva A, Den Otter W, Svirshchevskaya E. Antitumor effect of double immunization of mice with mucin 1 and its coding DNA. Anticancer Res. 2005;25(6B):3893–8.PubMedGoogle Scholar
  13. 13.
    Albrecht H, Carraway 3rd KL. MUC1 and MUC4: switching the emphasis from large to small. Cancer Biother Radiopharm. 2011;26(3):261–71. doi: 10.1089/cbr.2011.1017.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Tang Y, Wang L, Zhang P, Wei H, Gao R, Liu X, et al. Detection of circulating anti-mucin 1 (MUC1) antibodies in breast tumor patients by indirect enzyme-linked immunosorbent assay using a recombinant MUC1 protein containing six tandem repeats and expressed in Escherichia coli. Clin Vaccine Immunol CVI. 2010;17(12):1903–8. doi: 10.1128/CVI.00142-10.CrossRefGoogle Scholar
  15. 15.
    Daniele L, Sapino A. Anti-HER2 treatment and breast cancer: state of the art, recent patents, and new strategies. Recent Patents Anti Cancer Drug Discov. 2009;4(1):9–18.CrossRefGoogle Scholar
  16. 16.
    Mohanty K, Saha A, Pal S, Mallick P, Chatterjee SK, Foon KA, et al. Anti-tumor immunity induced by an anti-idiotype antibody mimicking human Her-2/neu. Breast Cancer Res Treat. 2007;104(1):1–11. doi: 10.1007/s10549-006-9391-9.PubMedCrossRefGoogle Scholar
  17. 17.
    Goodell V, Waisman J, Salazar LG, de la Rosa C, Link J, Coveler AL, et al. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol Cancer Ther. 2008;7(3):449–54. doi: 10.1158/1535-7163.MCT-07-0386.PubMedCrossRefGoogle Scholar
  18. 18.
    Wilkie S, van Schalkwyk MC, Hobbs S, Davies DM, van der Stegen SJ, Pereira AC, et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70. doi: 10.1007/s10875-012-9689-9.PubMedCrossRefGoogle Scholar
  19. 19.
    Amani J, Salmanian AH, Rafati S, Mousavi SL. Immunogenic properties of chimeric protein from espA, eae and tir genes of Escherichia coli O157:H7. Vaccine. 2010;28(42):6923–9. doi: 10.1016/j.vaccine.2010.07.061.PubMedCrossRefGoogle Scholar
  20. 20.
    Schunk MK, Macallum GE. Applications and optimization of immunization procedures. ILAR J/Natl Res Counc Inst Lab Anim Resour. 2005;46(3):241–57.CrossRefGoogle Scholar
  21. 21.
    Assarehzadegan MA, Sankian M, Jabbari F, Tehrani M, Varasteh A. Expression of the recombinant major allergen of Salsola kali pollen (Sal k 1) and comparison with its low-immunoglobulin E-binding mutant. Allergol Int Off J Jpn Soc Allergol. 2010;59(2):213–22. doi: 10.2332/allergolint.09-OA-0155.CrossRefGoogle Scholar
  22. 22.
    Dominguez WG, Nardi H, Montero H, Vincent E, Corte MM, Balogh GA. HER2/neu protein expression and fine needle breast aspiration from Argentinean patients with non-palpable breast lesions. Exp Ther Med. 2010;1(4):597–602. doi: 10.3892/etm_00000094.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Brocke C, Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg Med Chem. 2002;10(10):3085–112.PubMedCrossRefGoogle Scholar
  24. 24.
    Desmetz C, Bascoul-Mollevi C, Rochaix P, Lamy PJ, Kramar A, Rouanet P, et al. Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women. Clin Cancer Res Off J Am Assoc Cancer Res. 2009;15(14):4733–41. doi: 10.1158/1078-0432.CCR-08-3307.CrossRefGoogle Scholar
  25. 25.
    Mirabelli P, Incoronato M. Usefulness of traditional serum biomarkers for management of breast cancer patients. BioMed Res Int. 2013;2013:685641. doi: 10.1155/2013/685641.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT. The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res Off J Am Assoc Cancer Res. 2000;6(6):2363–70.Google Scholar
  27. 27.
    Croce MV, Isla-Larrain MT, Demichelis SO, Gori JR, Price MR, Segal-Eiras A. Tissue and serum MUC1 mucin detection in breast cancer patients. Breast Cancer Res Treat. 2003;81(3):195–207. doi: 10.1023/A:1026110417294.PubMedCrossRefGoogle Scholar
  28. 28.
    Lu H, Ladd J, Feng Z, Wu M, Goodell V, Pitteri SJ, et al. Evaluation of known oncoantibodies, HER2, p53, and cyclin B1, in prediagnostic breast cancer sera. Cancer Prev Res (Phila). 2012;5(8):1036–43. doi: 10.1158/1940-6207.CAPR-11-0558.CrossRefGoogle Scholar
  29. 29.
    Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M. Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am J Respir Crit Care Med. 2000;161(2 Pt 1):589–94. doi: 10.1164/ajrccm.161.2.9905028.PubMedCrossRefGoogle Scholar
  30. 30.
    Isla Larrain M, Demichelis S, Crespo M, Lacunza E, Barbera A, Creton A, et al. Breast cancer humoral immune response: involvement of Lewis y through the detection of circulating immune complexes and association with Mucin 1 (MUC1). J Exp Clin Cancer Res CR. 2009;28:121. doi: 10.1186/1756-9966-28-121.CrossRefGoogle Scholar
  31. 31.
    Pichinuk E, Benhar I, Jacobi O, Chalik M, Weiss L, Ziv R, et al. Antibody targeting of cell-bound MUC1 SEA domain kills tumor cells. Cancer Res. 2012;72(13):3324–36. doi: 10.1158/0008-5472.CAN-12-0067.PubMedCrossRefGoogle Scholar
  32. 32.
    Witzel I, Loibl S, von Minckwitz G, Eidtmann H, Fehm T, Khandan F, et al. Predictive value of HER2 serum levels in patients treated with lapatinib or trastuzumab—a translational project in the neoadjuvant GeparQuinto trial. Br J Cancer. 2012;107(6):956–60. doi: 10.1038/bjc.2012.353.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Ma L, Yang H, Han X, LI J, Wang F, Zhang C-l, et al. Relationship between serum HER2 extracellular domain levels, tissue HER2 expression, and clinico-pathological parameters in early stage breast cancer. Chin Med J. 2012;125:4104–10.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Elaheh Gheybi
    • 1
    • 2
  • Jafar Amani
    • 1
  • Ali Hatef Salmanian
    • 3
  • Farhad Mashayekhi
    • 2
  • Samaneh Khodi
    • 1
  1. 1.Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Department of Biology, Science FacultyGuilan UniversityRashtIran
  3. 3.Department of Plant BiotechnologyNational Institute of Genetic Engineering and BiotechnologyTehranIran

Personalised recommendations