Skip to main content
Log in

Downregulation of a long noncoding RNA-ncRuPAR contributes to tumor inhibition in colorectal cancer

  • Research Article
  • Published:
Tumor Biology

Abstracts

In recent years, the role of long noncoding RNAs (lncRNAs) in cancer is increasingly focused. ncRuPAR is a newly detected lncRNA; in previous study, we found out that ncRuPAR could inhibit tumor progression by downregulating protease-activated receptor-1 (PAR-1), but its role in colorectal cancer (CRC) is never elucidated. Here, we conducted a self-control study which includes 105 CRC samples. By quantitative real time PCR (qRT-PCR) and immunohistochemical staining, we detected the expression of ncRuPAR and PAR-1 as well as their correlation; we further associated these data with the clinicopathologic parameters. A receiver operating characteristic (ROC) curve was constructed to evaluate the diagnostic value of ncRuPAR and PAR-1, respectively. Our results indicated that the expression of ncRuPAR was significantly downregulated in CRC compared with paired adjacent nontumor tissues, but the level of PAR-1 mRNA in cancerous tissues was significantly higher than in adjacent normal areas. The expression of ncRuPAR was significantly correlated with lymph node metastasis, distant metastasis, Duck’s stage, differentiation, and TNM stage and was potentially negatively associated with the mRNA levels and EI scores of PAR-1. The area under the ROC curve of ncRuPAR was 0.81 (95 % confidence interval (CI): 0.75–0.87); at a cutoff value of 8.34, the ncRuPAR measurement had a sensitivity of 97.14 %, a specificity of 65.87 %, and an accuracy of 82.86 % to predict CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zafar SY, Malin JL, Grambow SC, et al. Chemotherapy use and patient treatment preferences in advanced colorectal cancer: a prospective cohort study. Cancer. 2013;119(4):854–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Kelley RK, Wang G, Venook AP. Biomarker use in colorectal cancer therapy. J Natl Compr Canc Netw. 2011;9(11):1293–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Cai SB, Zhang X, Chen ZX, et al. Medicated serum prepared with Chinese herbal medicine Zhizhen Recipe down-regulates activity of nuclear factor-κB and expression of P-glycoprotein in human colorectal cancer multidrug-resistant cell line HCT-8/VCR. Zhong Xi Yi Jie He Xue Bao. 2011;9(12):1353–9.

    Article  PubMed  Google Scholar 

  4. Krzyzanowski PM, Muro EM, Andrade-Navarro MA. Computational approaches to discovering noncoding RNA. Wiley Interdiscip Rev RNA. 2012;3(4):567–79.

    Article  CAS  PubMed  Google Scholar 

  5. Muers M. RNA: genome-wide views of long non-coding RNAs. Nat Rev Genet. 2011;12(11):742.

    Article  CAS  PubMed  Google Scholar 

  6. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lee JT. The X, as model for RNA’s niche in epigenomic regulation. Cold Spring Harb Perspect Biol. 2010;2(9):a003749.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Nagano T, Fraser P. No-nonsense functions for long noncoding RNAs. Cell. 2011;145(2):178–81.

    Article  CAS  PubMed  Google Scholar 

  11. Prensner JR, Iyer MK, Balbin OA, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lai MC, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2012;29(3):1810–6.

    Article  CAS  PubMed  Google Scholar 

  13. Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30(47):4750–6.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Huang JF, Guo YJ, Zhao CX, et al. HBx-related lncRNA Dreh inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology. 2013;57(5):1882–92.

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, Yan B, Yang Z, et al. ncRuPAR inhibits gastric cancer progression by down-regulating protease-activated receptor-1. Tumour Biol. 2014.

  17. Edge SB, Byrd DR, Compton CC, et al. AJCC Cancer Staging Manual. 7th ed. New York: Springer; 2009. p. 347–76.

    Google Scholar 

  18. Sarela AI, Verbeke CS, Ramsdale J, et al. Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma. Br J Cancer. 2002;86(6):886–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Barbareschi M, Maisonneuve P, Aldovini D, et al. High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer. 2003;98(3):474–83.

    Article  PubMed  Google Scholar 

  20. Yang F, Bi J, Xue X, et al. Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J. 2012;279(17):3159–65.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SR, Kim HO, Shin JH, et al. Prognostic significance of quantitative carcinoembryonic antigen and cytokeratin 20 mRNA detection in peritoneal washes of gastric cancer patients. Hepatogastroenterol. 2013;60(125):1237–44.

    CAS  Google Scholar 

  22. Yoshimizu T, Miroglio A, Ripoche MA, et al. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A. 2008;105(34):12417–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Matouk IJ, DeGroot N, Mezan S, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE. 2007;2(9):e845.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer. 2007;7(2):79–94.

    Article  CAS  PubMed  Google Scholar 

  25. Even-Ram S, Uziely B, Cohen P, et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med. 1998;4(8):909–14.

    Article  CAS  PubMed  Google Scholar 

  26. Darmoul D, Gratio V, Devaud H, et al. Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol. 2003;162(5):1503–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Daaka Y. G proteins in cancer: the prostate cancer paradigm. Sci STKE. 2004;2004(216):re2.

    PubMed  Google Scholar 

  28. Stanbridge EJ. Identifying tumor suppressor genes in human colorectal cancer. Science. 1990;247(4938):12–3.

    Article  CAS  PubMed  Google Scholar 

  29. Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogenesis. Semin Liver Dis. 2011;31(2):173–87.

    Article  CAS  PubMed  Google Scholar 

  30. Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81(4):303–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Madamanchi NR, Hu ZY, Li F, et al. A noncoding RNA regulates human protease-activated receptor-1 gene during embryogenesis. Biochim Biophys Acta. 2002;1576(3):237–45.

    Article  CAS  PubMed  Google Scholar 

  32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  33. Wang WJ. Enhancing the treatment of metabolic syndrome with integrative medicine. J Integr Med. 2013;11(3):153–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants 81102693 and 81102565).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Liu.

Additional information

Bing Yan, Wei Gu, Zhihui Yang, Zhan Gu, and Long Liu contribute equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Gu, W., Yang, Z. et al. Downregulation of a long noncoding RNA-ncRuPAR contributes to tumor inhibition in colorectal cancer. Tumor Biol. 35, 11329–11335 (2014). https://doi.org/10.1007/s13277-014-2465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2465-0

Keywords

Navigation