Tumor Biology

, Volume 35, Issue 11, pp 11319–11328 | Cite as

The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer

  • Zhenguo Song
  • He Ren
  • Song Gao
  • Xiao Zhao
  • Huan Zhang
  • Jihui Hao
Research Article


The aim of study was to discuss the correlation and regulatory mechanism of HIF-1 and miR-191 expression in pancreatic tumor. The association between the miR-191 and the clinicopathologic characteristics and the prognosis of pancreatic cancer was further explored. After hypoxic cultured for 6 and 12 h, qRT-PCR and Western blot were practiced to analyze the miR-191 and HIF-1 expression of MIA PaCa-2 and Aspac1 cells. We regulated the HIF-1 expression via plasmid and siRNA transfection to observe the alteration of HIF-1 and miR-191 expression. ChIP sequencing identified the binding sites of HIF-1 and miR-191. Dual luciferase assays were practiced to verify the binding sites. Immunohistochemical staining was practiced to analyze the expression of HIF-1, while qRT-PCR were done for investigating miR-191 in tumor tissues. Then, the association between the expression of them and the clinicopathologic characteristics and prognosis of pancreatic cancer were analyzed. After hypoxic cultured 12 h, the expression of HIF-1 protein, HIF-1mRNA and miR-191 of MIA PaCa-2 and AsPC-1 cells increased significantly (P < 0.05). After HIF-1 overexpressing plasmid transfected to the MIA PaCa-2 and AsPC-1 cells for 48 h, the expression of HIF-1 protein, HIF-1mRNA, and miR-191 upregulated significantly (P < 0.05). While after transfected the MIA PaCa-2 cells by HIF-1 siRNA, the significant decreasing of HIF-1 protein, HIF-1mRNA, and miR-191 expression were observed (P < 0.05). ChIP sequencing showed the protein synthesis of HIF-1 increased in hypoxia situation. Only the HRE5 (−1,169 bp, ChIP4) were significantly brighter in hypoxia in comparing with normoxic cells. In dual luciferase assays, after pGL3-miR-191 and HIF-1 overexpressing plasmid co-transfect the MIAPaCa-2 cells for 48 h, its relative expression of bioluminescence was higher than those co-transfected by mutant miR-191 vectors and HIF-1 overexpressing plasmid or by pGL3-miR-191 and HIF-1 empty plasmid. The expression of miR-191 closely associated with the tumor size, pTNM stage, lymph node metastasis, and perineural invasion (P < 0.05). Patients with higher expression of miR-191 were a risk factor for prognosis of pancreatic cancers. Expression of HIF-1 in pancreatic cancer cells increased under the condition of chronic hypoxia, which may bind to HRE2 in 5'flanking region of miR-191 and initiate transcription of miR-191. Expression of miR-191 was significantly higher in pancreatic tumor tissues. The expression of miR-191 closely associated with the tumor size, pTNM stage, lymph node metastasis and perineural invasion and poor prognosis of pancreatic cancer.


HIF-1 MiR-191 Pancreatic cancer 


  1. 1.
    Sun W, Julie L, Huang HD, Shyy JY, Chien S. microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng. 2010;12:1–27.PubMedCrossRefGoogle Scholar
  2. 2.
    Cecilia D, Simona G, Fabio M, et al. miR-210: more than a silent player in hypoxia. IUBMB Life. 2011;2(63):94–100.Google Scholar
  3. 3.
    Berezikov E, Furyev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120(1):21–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136:586–91.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Song T, Zhang X, Wang C, et al. MiR-138 suppresses expression of hypoxia-inducible factor 1α (HIF-1α) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev. 2011;12(5):1307–11.PubMedGoogle Scholar
  6. 6.
    Srinivas V, David L, Anders K, et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 2009;124(9):2236–42.CrossRefGoogle Scholar
  7. 7.
    Jun Y, Kenoki O, Kazuhiro M, Jun Y, Kenoki O, Kazuhiro M, et al. MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis, and involved in cancer cell proliferation and invasion. Cancer Biol Ther. 2010;8(10):748–57.Google Scholar
  8. 8.
    Kizaka-Kondoh S, Tanaka S, Harada H, et al. The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev. 2009;61(7–8):623–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010;120(11):3815–7.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Stephen YC, Joseph L. MicroRNA-210 a unique and pleiotropic hypoxamir. Cell Cycle. 2010;6(9):1072–83.Google Scholar
  11. 11.
    Rane S et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxic preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Strimpakos AS, Syrigos KN, Saif MW. The molecular targets for the diagnosis and treatment of pancreatic cancer[J]. Gut Liver. 2010;12(4):433–49. doi: 10.5009/gnl.2010.4.4.433.CrossRefGoogle Scholar
  13. 13.
    Greither T, Grochola LF, Udelnow A, et al. Elevated expression of microRNAs 155, 203, 210 and 222 in pancreatic tumors is associated with poorer survival[J]. Int J Cancer. 2010;126(1):73–80. doi: 10.1002/ijc.24687.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu R, Chen X, Du Y, et al. Serum MicroRNA Expression Profile as a Biomarker in the Diagnosis and Prognosis of Pancreatic Cancer[J]. Clin Chem. 2012;58(3):610–8. doi: 10.1373/clinchem.2011.172767.PubMedCrossRefGoogle Scholar
  15. 15.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2- △△ Ct method[J]. Methods. 2001;25(4):402–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao T, Gao S, Wang X, Liu J, Duan Y, et al. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene. PLoS One. 2012;7(8):e43399. doi: 10.1371/journal.pone.0043399.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kulshreshthar R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia[J]. Mol Cell Biol. 2007;27:1859–67.CrossRefGoogle Scholar
  18. 18.
    Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia[J]. Blood. 2008;111(6):3183–9. doi: 10.1182/blood-2007-07-098749.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Xi Y, Formentini A, Chien M, et al. Prognostic values of microRNAs in colorectal cancer[J]. Biomark Insights. 2006;2:113–21.PubMedGoogle Scholar
  20. 20.
    Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci. 2006;103(7):2257–61. doi: 10.1073/pnas.0510565103.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias[J]. Proc Natl Acad Sci. 2004;101(32):11755–60. doi: 10.1073/pnas.0404432101.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    He Y, Cui Y, Wang W, et al. Hypomethylation of the hsa-miR-191 locus causes high expression of hsa-miR-191 and promotes the epithelial-to-mesenchymal transition in hepatocellular carcinoma[J]. Neoplasia. 2011;13(9):841–53.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Sengupta S, Kim KS, Berk MP, et al. Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion[J]. Oncogene. 2007;26:2894–901.PubMedCrossRefGoogle Scholar
  24. 24.
    Piper M, Barry G, Hawkins J, et al. NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1[J]. J Neurosci. 2010;30(27):9127–39. doi: 10.1523/JNEUROSCI.6167-09.2010.PubMedCrossRefGoogle Scholar
  25. 25.
    Starnes LM, Sorrentino A, Ferracin M, et al. A transcriptome-wide approach reveals the key contribution of NFI-A in promoting erythroid differentiation of human CD34(+) progenitors and CML cells[J]. Leukemia. 2010;24:1220–3. doi: 10.1038/leu.2010.78.PubMedCrossRefGoogle Scholar
  26. 26.
    Koli K, Ryynanen MJ, Keski-Oja J. Latent TGF-beta binding proteins (LTBPs)-1 and -3 coordinate proliferation and osteogenic differentiation of human mesenchymal stem cells[J]. Bone. 2008;43(4):679–88. doi: 10.1016/j.bone.2008.06.016.PubMedCrossRefGoogle Scholar
  27. 27.
    Chandramouli A, Simundza J, Pinderhughes A, et al. Choreographing metastasis to the tune of LTBP[J]. J Mammary Gland Biol Neoplasia. 2011;16:67–80. doi: 10.1007/s10911-011-9215-3.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Soutar AK. Unexpected roles for PCSK9 in lipid metabolism[J]. Curr Opin Lipidol. 2011;22(3):192–6. doi: 10.1097/MOL.0b013e32834622b5.PubMedCrossRefGoogle Scholar
  29. 29.
    Grentzmann G, Ingram JA, Kelly PJ, et al. A dual-luciferase reporter system for studying recoding signals[J]. RNA. 1998;4(4):479–86.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Shi X, Su S, Long J, et al. MicroRNA-191 targets N-deacetylase/N-sulfotransferase 1 and promotes cell growth in human gastric carcinoma cell line MGC803[J]. Acta Biochim Biophys Sin. 2011;43(11):849–56. doi: 10.1093/abbs/gmr084.PubMedCrossRefGoogle Scholar
  31. 31.
    Elyakim E, Sitbon E, Faerman A, et al. hsa- miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy[J]. Cancer Res. 2010;70:8077–87. doi: 10.1158/0008-5472.CAN-10-1313.PubMedCrossRefGoogle Scholar
  32. 32.
    Di Leva GD, Piovan C, Gasparini P, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status[EB/OL]. PLoS Genet. 2013;9(3):e1003311. doi: 10.1371/journal.pgen.1003311.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Caramuta S, Egyhazi S, Rodolfo M, et al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma[J]. J Investig Dermatol. 2010;130:2062–70. doi: 10.1038/jid.2010.63.PubMedCrossRefGoogle Scholar
  34. 34.
    Hui AB, Shi W, Boutros PC, et al. Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues[J]. Lab Investig. 2009;89:597–606. doi: 10.1038/labinvest.2009.12.PubMedCrossRefGoogle Scholar
  35. 35.
    Shen J, DiCioccio R, Odunsi K, et al. Novel genetic variants in miR-191 gene and familial ovarian cancer[J]. BMC Cancer. 2010;10:47–56. doi: 10.1186/1471-2407-10-47.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Wynendaele J, Bohnke A, Leucci E, et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity[J]. Cancer Res. 2010;70:9641–9. doi: 10.1158/0008-5472.CAN-10-0527.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Zhenguo Song
    • 1
    • 2
  • He Ren
    • 1
  • Song Gao
    • 1
  • Xiao Zhao
    • 1
  • Huan Zhang
    • 1
  • Jihui Hao
    • 1
  1. 1.Department of Pancreatic CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
  2. 2.Department of Anesthesiology and Operating CenterTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy TianjinChina

Personalised recommendations