Advertisement

Tumor Biology

, Volume 35, Issue 11, pp 11301–11309 | Cite as

Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span

  • Marwa Amer
  • M. Elhefnawi
  • Eman El-Ahwany
  • A. F. Awad
  • Nermen Abdel Gawad
  • Suher Zada
  • F. M. Abdel Tawab
Research Article

Abstract

MicroRNAs are small 19–25 nucleotides which have been shown to play important roles in the regulation of gene expression in many organisms. Downregulation or accumulation of miRNAs implies either tumor suppression or oncogenic activation. In this study, differentially expressed hsa-miR-195 in hepatocellular carcinoma (HCC) was identified and analyzed. The prediction was done using a consensus approach of tools. The validation steps were done at two different levels in silico and in vitro. FGF7, GHR, PCMT1, CITED2, PEX5, PEX13, NOVA1, AXIN2, and TSPYL2 were detected with high significant (P < 0.005). These genes are involved in important pathways in cancer like MAPK signaling pathway, Jak-STAT signaling pathways, regulation of actin cytoskeleton, angiogenesis, Wnt signaling pathway, and TGF-beta signaling pathway. In vitro target validation was done for protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT1). The co-transfection of pmirGLO-PCMT1 and pEGP-miR-195 showed highly significant results. Firefly luciferase was detected using Lumiscensor and t test analysis was done. Firefly luciferase expression was significantly decreased (P < 0.001) in comparison to the control. The low expression of firefly luciferase validates the method of target prediction that we used in this work by working on PCMT1 as a target for miR-195. Furthermore, the rest of the predicted genes are suspected to be real targets for hsa-miR-195. These target genes control almost all the hallmarks of liver cancer which can be used as therapeutic targets in cancer treatment.

Keywords

miRNA Target prediction Luciferase Cancer 

Notes

Acknowledgments

We acknowledge everyone who helped us in doing this work. We appreciate Dr Hala Eissa and Mr Yasser Morsy for their support and assistance in vector construction.

Conflict of interest

None

References

  1. 1.
    Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Steel LF, Mattu TS, Mehta A, Hebestreit H, Dwek R, et al. A proteomic approach for the discovery of early detection markers of hepatocellular carcinoma. Dis Markers. 2001;17:179–89.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Moradpour D, Blum HE. Pathogenesis of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005;17:477–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Colombo M, Sangiovanni A. Etiology, natural history and treatment of hepatocellular carcinoma. Antiviral Res. 2003;60:145–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee JS, Thorgeirsson SS. Comparative and integrative functional genomics of HCC. Oncogene. 2006;25:3801–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Lemmer ER, Friedman SL, Llovet JM. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling. Semin Liver Dis. 2006;26:373–84.PubMedCrossRefGoogle Scholar
  7. 7.
    Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38:1375–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 2006;16:1289–98.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMedGoogle Scholar
  12. 12.
    Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.PubMedCrossRefGoogle Scholar
  17. 17.
    Xue C, Li F, He T, Liu GP, Li Y, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinforma. 2005;6:310.CrossRefGoogle Scholar
  18. 18.
    Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Ritchie W, Legendre M, Gautheret D. RNA stem-loops: to be or not to be cleaved by RNAse III. RNA. 2007;13:457–62.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, et al. A uniform system for microRNA annotation. RNA. 2003;9:277–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2010;585:2087–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Huang V, Place RF, Portnoy V, Wang J, Qi Z, et al. Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2011;40:1695–707.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25:13–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology. 2009;6:18.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRefGoogle Scholar
  30. 30.
    Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome. 2006;17:189–202.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Verghese ET, Hanby AM, Speirs V, Hughes TA. Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol. 2008;215:214–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch. 2008;452:1–10.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.PubMedCrossRefGoogle Scholar
  37. 37.
    Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res. 2011;157:216–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A. 2001;98:14814–8.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lowenson JD, Kim E, Young SG, Clarke S. Limited accumulation of damaged proteins in l-isoaspartyl (d-aspartyl) O-methyltransferase-deficient mice. J Biol Chem. 2001;276:20695–702.PubMedCrossRefGoogle Scholar
  40. 40.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.PubMedCrossRefGoogle Scholar
  45. 45.
    O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.PubMedCrossRefGoogle Scholar
  46. 46.
    Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008;68:2773–80.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Su H, Yang JR, Xu T, Huang J, Xu L, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Robert M, Maluf G, Yanek K, Kong X, Kulik L, et al. Genes involved in viral carcinogenesis and tumor initiation in hepatitis c virus-induced hepatocellular carcinoma. Mol Med. 2009;15:85–94.Google Scholar
  51. 51.
    Huebscher KJ, Lee J, Rovelli G, Ludin B, Matus A, et al. Protein isoaspartyl methyltransferase protects from Bax-induced apoptosis. Gene. 1999;240:333–41.PubMedCrossRefGoogle Scholar
  52. 52.
    Kosugi S, Furuchi T, Katane M, Sekine M, Shirasawa T, et al. Suppression of protein l-isoaspartyl (d-aspartyl) methyltransferase results in hyperactivation of EGF-stimulated MEK-ERK signaling in cultured mammalian cells. Biochem Biophys Res Commun. 2008;371:22–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol. 2008;23:87–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai). 2009;41:1–15.CrossRefGoogle Scholar
  55. 55.
    Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11:R6.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39:D152–157.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.PubMedCrossRefGoogle Scholar
  58. 58.
    Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18:1165–78.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Wang X. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA. 2008;14:1012–7.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    John B, Enright AJ, Aravin A, Tuschl T, Sander C, et al. Human microRNA targets. PLoS Biol. 2004;2:e363.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinforma. 2013;11:354–67.CrossRefGoogle Scholar
  62. 62.
    Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163–169.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Xiao F, Zuo Z, Cai G, Kang S, Gao X, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105–110.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Kruger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34:W451–454.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, et al. Thermodynamics of RNA-RNA binding. Bioinformatics. 2006;22:1177–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Carver T, Bleasby A. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics. 2003;19:1837–43.PubMedCrossRefGoogle Scholar
  69. 69.
    Carver TJ, Mullan LJ. Website update: a new graphical user interface to EMBOSS. Comp Funct Genomics. 2002;3:75–8.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36:W423–426.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, et al. Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One. 2009;4:e7710.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Vastrik I, D'Eustachio P, Schmidt E, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRefGoogle Scholar
  74. 74.
    Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, et al. GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35:W186–192.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    McLauchlan J, Lemberg MK, Hope G, Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 2002;21:3980–8.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Marwa Amer
    • 1
    • 4
  • M. Elhefnawi
    • 2
  • Eman El-Ahwany
    • 3
    • 4
  • A. F. Awad
    • 5
  • Nermen Abdel Gawad
    • 5
  • Suher Zada
    • 4
  • F. M. Abdel Tawab
    • 5
  1. 1.Biotechnology Department, Faculty of BiotechnologyMisr University for Science and TechnologyGizaEgypt
  2. 2.Biomedical Informatics and Chemoinformatics Research Group, Center of Excellence for Advanced SciencesNational Research CenterGizaEgypt
  3. 3.Immunology DepartmentTheodor Bilharz Research InstituteGizaEgypt
  4. 4.Biology DepartmentAmerican University in CairoCairoEgypt
  5. 5.Genetics Department, Faculty of AgricultureAin-Shams UniversityCairoEgypt

Personalised recommendations