Tumor Biology

, Volume 35, Issue 11, pp 11075–11079 | Cite as

Expression and clinical significance of microRNA-152 in supragalottic laryngeal carcinoma

  • Yan Song
  • Yuan Tian
  • Wei-liang Bai
  • Xiu-lan Ma
Research Article


MicroRNAs (miRNAs) are small, noncoding RNAs of endogenous origin that play an important role in tumor development. Here, we examined the role of miR-152 in supragalottic laryngeal carcinoma. The expression of miR-152 was assessed by real-time PCR in tissues from 83 patients with supragalottic laryngeal carcinoma in relation to clinicopathological parameters. Cell viability was assessed by thiazolyl blue assay in Hep-2 cells transfected with miR-152 mimics or a negative control. MiR-152 was significantly downregulated in supragalottic laryngeal carcinoma tissues (t = 12.65, p < 0.001, paired t test), and its expression was correlated with pT stage (χ 2 = 26.88, p < 0.001) and pN stage (z = −3.56, p < 0.001) in patients with supragalottic laryngeal carcinoma. MiR-152 inhibited the proliferation of Hep-2 cells. MiR-152 may serve as a novel prognostic marker in patients with supragalottic laryngeal carcinoma.


Supragalottic laryngeal carcinoma MiR-152 Hep-2 cell line Clinical relevance 





Head and neck squamous cell carcinoma


Hep-2 cells transfected with miR-152 mimic negative control



We thank Prof. Di Na for the technical assistance and Dr. Ya-nan Ma for the precious advices.


This study was supported by Liaoning province Science and Technology plan project (NO.2011225039).


  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.PubMedCrossRefGoogle Scholar
  2. 2.
    Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Sanderson RJ, Ironside JA. Squamous cell carcinomas of the head and neck. BMJ. 2002;325:822–7.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRefGoogle Scholar
  5. 5.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.PubMedCrossRefGoogle Scholar
  6. 6.
    Bandyopadhyay S, Mitra R, Maulik U, Zhang MQ. Development of the human cancer microRNA network. Silence. 2010;1:6.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Su Y, Wang Y, Zhou H, Lei L, Xu L. MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett. 2014;588(10):1983–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Azizi M, Teimoori-Toolabi L, Arzanani MK, Azadmanesh K, Fard-Esfahani P, Zeinali S. MicroRNA-148b and microRNA-152 reactivate tumor suppressor genes through suppression of DNA methyltransferase-1 gene in pancreatic cancer cell lines. Cancer Biol Ther. 2014;15(4):419–27.PubMedCrossRefGoogle Scholar
  9. 9.
    Huang S, Xie Y, Yang P, Chen P, Zhang L. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells. PLoS One. 2014;9(1):e81730.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zhu C, Li J, Ding Q, Cheng G, Zhou H, Tao L, et al. miR-152 controls migration and invasive potential by targeting TGFα in prostate cancer cell lines. Prostate. 2013;73(10):1082–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Zheng X, Chopp M, Lu Y, Buller B, Jiang F. MiR-15b and miR-152 reduce glioma cell invasion and angiogenesis via NRP-2 and MMP-3. Cancer Lett. 2013;329(2):146–54.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Woo HH, László CF, Greco S, Chambers SK. Regulation of colony stimulating factor-1 expression and ovarian cancer cell behavior in vitro by miR-128 and miR-152. Mol Cancer. 2012;11:58.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005;39:519–25.PubMedCrossRefGoogle Scholar
  14. 14.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (delta delta c (T)) method. Methods. 2001;25:402–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41:67–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67:129–39.PubMedCrossRefGoogle Scholar
  17. 17.
    Köhler CU, Bryk O, Meier S, Lang K, Rozynek P, Brüning T, et al. Analyses in human urothelial cells identify methylation of miR-152, miR-200b and miR-10a genes as candidate bladder cancer biomarkers. Biochem Biophys Res Commun. 2013;438(1):48–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Theodore SC, Davis M, Zhao F, Wang H, Chen D, Rhim J, Dean-Colomb W, Turner T, Ji W, Zeng G, Grizzle W, Yates C. MicroRNA profiling of novel African American and Caucasian Prostate Cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1. Oncotarget. 2014;5(11):3512–25.Google Scholar
  19. 19.
    Liu L, Zou J, Wang Q, Yin FQ, Zhang W, Li L. Novel microRNAs expression of patients with chemotherapy drug-resistant and chemotherapy-sensitive epithelial ovarian cancer. Tumour Biol. 2014. doi: 10.1007/s13277-014-1970-5.
  20. 20.
    Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, Zhao R, Huang H, Wang X, Qiao Y,Li F, Han D, Wang L, Zhang G, Gao X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33(3):378–86.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Yan Song
    • 1
  • Yuan Tian
    • 1
  • Wei-liang Bai
    • 1
  • Xiu-lan Ma
    • 1
  1. 1.Department of Otorhinolaryngology, The Shengjing HospitalChina Medical UniversityShenyangChina

Personalised recommendations