Tumor Biology

, Volume 35, Issue 11, pp 11027–11039 | Cite as

Mitochondrial and caspase pathways are involved in the induction of apoptosis by IB-MECA in ovarian cancer cell lines

  • Hamideh Abedi
  • Mahmoud Aghaei
  • Mojtaba Panjehpour
  • Sima Hajiahmadi
Research Article


A3 adenosine receptor agonist (IB-MECA) has been shown to play important roles in cell proliferation and apoptosis in a variety of cancer cell lines. The present study was designed to understand the mechanism underlying IB-MECA-induced apoptosis in human ovarian cancer cell lines. The messenger RNA (mRNA) and protein expression levels of A3 adenosine receptor were detected in OVCAR-3 and Caov-4 ovarian cancer cells. IB-MECA was capable of decreasing intracellular cyclic adenosine monophosphate (cAMP) that was the reason for the presence of functional A3 adenosine receptor on the cell lines. IB-MECA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of IB-MECA was suppressed by MRS1220, an A3 adenosine receptor antagonist. The growth inhibition effect of IB-MECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3 and caspase-9, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by IB-MECA were also observed. These findings demonstrated that IB-MECA induces apoptosis via the mitochondrial signaling pathway. These suggest that A3 adenosine receptor agonists may be a potential agent for induction of apoptosis in human ovarian cancer cells.


Ovarian cancer IB-MECA Apoptosis A3 adenosine receptor Caspase 



This work was supported by grants from Isfahan University of Medical Sciences.

Conflicts of interest



  1. 1.
    Parmar M, Ledermann J, Colombo N, Du Bois A, Delaloye J, Kristensen G, et al. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet. 2003;361:2099–106.PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart DE, Wong F, Cheung A, Dancey J, Meana M, Cameron J, et al. Information needs and decisional preferences among women with ovarian cancer. Gynecol Oncol. 2000;77:357–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.PubMedCrossRefGoogle Scholar
  5. 5.
    Kamesaki H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol. 1998;68:29–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Janssens R, Boeynaems JM. Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol. 2001;132:536–46.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Shirali S, Aghaei M, Shabani M, Fathi M, Sohrabi M, Moeinifard M. Adenosine induces cell cycle arrest and apoptosis via cyclinD1/Cdk4 and Bcl-2/Bax pathways in human ovarian cancer cell line OVCAR-3. Tumor Biol. 2013;34(2):1085–95.CrossRefGoogle Scholar
  8. 8.
    St Hilaire C, Carroll SH, Chen H, Ravid K. Mechanisms of induction of adenosine receptor genes and its functional significance. J Cell Physiol. 2009;218:35–44.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. Biochim Biophys Acta. 2011;1808:1400–12.PubMedCrossRefGoogle Scholar
  10. 10.
    Fredholm BB, IJzerman AP, Jacobson KA, Klotz K-N, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–52.PubMedGoogle Scholar
  11. 11.
    Poulsen SA, Quinn RJ. Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem. 1998;6:619–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Abbracchio MP. P1 and P2 receptors in cell growth and differentiation. Drug Dev Res. 1996;39:393–406.CrossRefGoogle Scholar
  13. 13.
    Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, et al. The A3 adenosine receptor is highly expressed in tumor versus normal cells potential target for tumor growth inhibition. Clin Cancer Res. 2004;10:4472–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Brambilla R, Cattabeni F, Ceruti S, Barbieri D, Franceschi C, Kim Y-C, et al. Activation of the A3 adenosine receptor affects cell cycle progression and cell growth. Naunyn Schmiedeberg’s Arch Pharmacol. 2000;361:225–34.CrossRefGoogle Scholar
  15. 15.
    Tanaka Y, Yoshihara K, Tsuyuki M, Kamiya T. Apoptosis induced by adenosine in human leukemia HL-60 cells. Exp Cell Res. 1994;213:242–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Fishman P, Madi L, Bar-Yehuda S, Barer F, Del Valle L, Khalili K. Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene. 2002;21:4060–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Abbracchio MP, Ceruti S, Brambilla R, Franceschi C, Malorni W, Jacobson KA, et al. Modulation of apoptosis by adenosine in the central nervous system: a possible role for the A3 receptor. Ann N Y Acad Sci. 1997;825:11–22.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A, et al. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3β and NF-κB. Oncogene. 2004;23:2465–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA. Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A(3) receptor agonists. Biochem Biophys Res Commun. 1996;219:904–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu J, Pierron A, Ravid K. An adenosine analogue, IB-MECA, down-regulates estrogen receptor α and suppresses human breast cancer cell proliferation. Cancer Res. 2003;63:6413–23.PubMedGoogle Scholar
  21. 21.
    Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P. A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem. 2003;278:42121–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Aghaei M, Panjehpour M, Karami-Tehrani F, Salami S. Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: involvement of intrinsic pathway. J Cancer Res Clin Oncol. 2011;137:1511–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Panjehpour M, Karami-Tehrani F. An adenosine analog (IB-MECA) inhibits anchorage-dependent cell growth of various human breast cancer cell lines. Int J Biochem Cell Biol. 2004;36:1502–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Panjehpour M, Karami-Tehrani F. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors. Oncol Res. 2007;16:575–85.PubMedCrossRefGoogle Scholar
  25. 25.
    Bar-Yehuda S, Stemmer S, Madi L, Castel D, Ochaion A, Cohen S, et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-κB signal transduction pathways. Int J Oncol. 2008;33:287.PubMedGoogle Scholar
  26. 26.
    Hashemi M, Karami-Tehrani F, Ghavami S, Maddika S, Los M. Adenosine and deoxyadenosine induces apoptosis in oestrogen receptor-positive and -negative human breast cancer cells via the intrinsic pathway. Cell Prolif. 2005;38:269–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghavami S, Eshragi M, Ande SR, Chazin WJ, Klonisch T, Halayko AJ, et al. S100A8/A9 induces autophagy and apoptosis via ROS-mediated cross-talk between mitochondria and lysosomes that involves BNIP3. Cell Res. 2010;20:314–31.Google Scholar
  28. 28.
    Ghavami S, Kerkhoff C, Chazin WJ, Kadkhoda K, Xiao W, Zuse A, et al. S100A8/9 induces cell death via a novel, RAGE-independent pathway that involves selective release of Smac/DIABLO and Omi/HtrA2. Biochim Biophys Acta. 2008;1783:297–311.PubMedCrossRefGoogle Scholar
  29. 29.
    Ohana G, Bar-Yehuda S, Barer F, Fishman P. Differential effect of adenosine on tumor and normal cell growth: focus on the A3 adenosine receptor. J Cell Physiol. 2001;186:19–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz K-N, et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Investig Dermatol. 2002;119:923–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Fishman P, Bar-Yehuda S, Madi L, Cohn I. A3 adenosine receptor as a target for cancer therapy. Anti Cancer Drug. 2002;13:437–43.CrossRefGoogle Scholar
  32. 32.
    Fishman P, Bar-Yehuda S, Ardon E, Rath-Wolfson L, Barrer F, Ochaion A, et al. Targeting the A3 adenosine receptor for cancer therapy: inhibition of prostate carcinoma cell growth by A3AR agonist. Anticancer Res. 2003;23:2077–84.PubMedGoogle Scholar
  33. 33.
    Kim S-J, Min H-Y, Chung H-J, Park E-J, Hong J-Y, Kang Y-J, et al. Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett. 2008;264:309–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim H, Kang JW, Lee S, Choi WJ, Jeong LS, Yang Y, et al. A3 adenosine receptor antagonist, truncated Thio-Cl-IB-MECA, induces apoptosis in T24 human bladder cancer cells. Anticancer Res. 2010;30:2823–30.PubMedGoogle Scholar
  35. 35.
    Mlejnek P, Dolezel P. Induction of apoptosis by A3 adenosine receptor agonist N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide in human leukaemia cells: a possible involvement of intracellular mechanism. Acta Physiol. 2010;199:171–9.CrossRefGoogle Scholar
  36. 36.
    Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, et al. Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-κB signalling pathway in thyroid cancer cells. J Cell Physiol. 2009;221:378–86.PubMedCrossRefGoogle Scholar
  37. 37.
    Fishman P, Bar-Yehuda S, Synowitz M, Powell J, Klotz K, Gessi S, et al. Adenosine receptors and cancer. Handb Exp Pharmacol. 2009;193:399–441.PubMedCrossRefGoogle Scholar
  38. 38.
    Panjehpour M, Castro M, Klotz KN. Human breast cancer cell line MDA-MB-231 expresses endogenous A2B adenosine receptors mediating a Ca2+ signal. Br J Pharmacol. 2005;145:211–8.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996;87:171.PubMedCrossRefGoogle Scholar
  40. 40.
    Saito M, Yaguchi T, Yasuda Y, Nakano T, Nishizaki T. Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A(1) adenosine receptors. Cancer Lett. 2010;290:211–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Yasuda Y, Saito M, Yamamura T, Yaguchi T, Nishizaki T. Extracellular adenosine induces apoptosis in Caco-2 human colonic cancer cells by activating caspase-9/-3 via A2a adenosine receptors. J Gastroenterol. 2009;44:56–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Shieh D-E, Chen Y-Y, Yen M-H, Chiang L-C, Lin C-C. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 2004;74:2279–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Dolle RE, Hoyer D, Prasad CV, Schmidt SJ, Helaszek CT, Miller RE, et al. P1 aspartate-based peptide alpha-((2,6-dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of interleukin-1 beta-converting enzyme. J Med Chem. 1994;37:563–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Korsmeyer SJ. BCL-2 gene family and the regulation of programmed cell death. Cancer Res. 1999;59:1693s–700s.PubMedGoogle Scholar
  45. 45.
    Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene. 1994;9:1799–805.PubMedGoogle Scholar
  46. 46.
    El-Darahali A, Fawcett H, Mader JS, Conrad DM, Hoskin DW. Adenosine-induced apoptosis in EL-4 thymoma cells is caspase-independent and mediated through a non-classical adenosine receptor. Exp Mol Pathol. 2005;79:249–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Sai K, Yang D, Yamamoto H, Fujikawa H, Yamamoto S, Nagata T, et al. A(1) adenosine receptor signal and AMPK involving caspase-9/-3 activation are responsible for adenosine-induced RCR-1 astrocytoma cell death. Neurotoxicology. 2006;27:458–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Wu LF, Li GP, Feng JL, Pu ZJ. Molecular mechanisms of adenosine-induced apoptosis in human HepG2 cells. Acta Pharmacol Sin. 2006;27:477–84.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Hamideh Abedi
    • 1
  • Mahmoud Aghaei
    • 1
  • Mojtaba Panjehpour
    • 1
    • 2
  • Sima Hajiahmadi
    • 1
  1. 1.Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
  2. 2.Bioinformatics Research CenterIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations