Tumor Biology

, Volume 35, Issue 11, pp 10977–10985 | Cite as

Melanoma differentiation-associated gene-7/interleukin-24 as a potential prognostic biomarker and second primary malignancy indicator in head and neck squamous cell carcinoma patients

  • Lin Wang
  • Zhien Feng
  • Huanhuan Wu
  • Shuai Zhang
  • Yinfei Pu
  • Huan Bian
  • Yixiang Wang
  • Chuanbin Guo
Research Article


The significance of melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24) expression in head and neck squamous cell carcinoma (HNSCC) remains unclear. This study was designed to investigate and evaluate the clinical significance of MDA-7/IL-24 expression in HNSCC by detecting expression by immunostaining in 131 HNSCC specimens. The function of MDA-7/IL-24 was investigated by real-time polymerase chain reaction (PCR) and Western blot in Ad5.mda-7-infected HNSCC cell lines. Our results showed that MDA-7/IL-24 was mainly expressed in the cytoplasm of HNSCC cells. MDA-7/IL-24 high patients presented with a favorable postoperative prognosis compared with MDA-7/IL-24 low patients, and high expression of MDA-7/IL-24 was significantly correlated with a lower incidence of second primary malignancies (SPMs) in the head and neck regions. In vitro assays showed that high expression of MDA-7/IL-24 could upregulate the expression of the epithelial terminal differentiation markers cytokeratin (KRT) 1, KRT4, KRT13, phosphorylated endoplasmic reticulum stress protein (p)-EIF2a, and the apoptosis-related protein cleaved caspase-3. It also downregulated the epithelial proliferative markers KRT5, KRT14, Integrin β4, and anti-apoptosis protein Bcl-2, which might be partially involved in the underlying mechanisms of Ad.mda-7-mediated HNSCC differentiation and apoptosis. Our results indicate that MDA-7/IL-24 can be a prognostic biomarker and an indicator of second primary malignancies (SPM) in HNSCC.


MDA-7/IL-24 Squamous cell carcinoma of the head and neck Second primary malignancy Biomarker Prognosis 



This study was supported by the 985 special fund for multi-hospitals’ phase III clinical trial in Peking University, the National High Technology Research and Development Program of China (no. 2009AA045201 and no. 2012AA041606), the Special fund for Capital Medical Development (no. 2011-4025-02), and the China Postdoctoral Science Foundation funded project (no. 2013 M530495). The source of replication-deficient adenoviruses used in this study was constructed by the Vector Gene Technology Company Ltd.

Conflicts of interest


Supplementary material

13277_2014_2392_Fig5_ESM.jpg (201 kb)

(JPEG 200 kb)


  1. 1.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. doi: 10.3322/canjclin.55.2.74.PubMedCrossRefGoogle Scholar
  2. 2.
    Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133(9):2013–23. doi: 10.1002/ijc.28112.PubMedCrossRefGoogle Scholar
  3. 3.
    Leon X, Quer M, Diez S, Orus C, Lopez-Pousa A, Burgues J. Second neoplasm in patients with head and neck cancer. Head Neck. 1999;21(3):204–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79. doi: 10.1146/annurev.immunol.22.012703.104622.PubMedCrossRefGoogle Scholar
  5. 5.
    Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene. 1995;11(12):2477–86.PubMedGoogle Scholar
  6. 6.
    Ellerhorst JA, Prieto VG, Ekmekcioglu S, Broemeling L, Yekell S, Chada S, et al. Loss of MDA-7 expression with progression of melanoma. J Clin Oncol. 2002;20(4):1069–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Jiang H, Su ZZ, Lin JJ, Goldstein NI, Young CS, Fisher PB. The melanoma differentiation associated gene mda-7 suppresses cancer cell growth. Proc Natl Acad Sci U S A. 1996;93(17):9160–5.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Su ZZ, Madireddi MT, Lin JJ, Young CS, Kitada S, Reed JC, et al. The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci U S A. 1998;95(24):14400–5.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wei L, Wang Z, Cui T, Yi F, Bu Y, Ding S, et al. Proteomic analysis of cervical cancer cells treated with adenovirus-mediated MDA-7. Cancer Biol Ther. 2008;7(4):510–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Hamed HA, Yacoub A, Park MA, Eulitt PJ, Dash R, Sarkar D, et al. Inhibition of multiple protective signaling pathways and Ad.5/3 delivery enhances mda-7/IL-24 therapy of malignant glioma. Mol Ther. 2010;18(6):1130–42.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Saeki T, Mhashilkar A, Swanson X, Zou-Yang XH, Sieger K, Kawabe S, et al. Inhibition of human lung cancer growth following adenovirus-mediated mda-7 gene expression in vivo. Oncogene. 2002;21(29):4558–66. doi: 10.1038/sj.onc.1205553.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhutia SK, Das SK, Kegelman TP, Azab B, Dash R, Su ZZ, et al. mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer. J Cell Physiol. 2012;227(5):1805–13. doi: 10.1002/jcp.22904.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Dent P, Yacoub A, Hamed HA, Park MA, Dash R, Bhutia SK, et al. MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs. 2010;21(8):725–31. doi: 10.1097/CAD.0b013e32833cfbe1.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Feng Z, Li JN, Wang L, Pu YF, Wang Y, Guo CB. The prognostic value of glycerol-3-phosphate dehydrogenase 1-like expression in head and neck squamous cell carcinoma. Histopathology. 2014;64(3):348–55. doi: 10.1111/his.12258.PubMedCrossRefGoogle Scholar
  15. 15.
    Warren S, Gates O. Multiple primary malignant tumors. A survey of the literature and a statistical study. Am J Cancer. 1932;16:1358–414.Google Scholar
  16. 16.
    Morris LG, Sikora AG, Patel SG, Hayes RB, Ganly I. Second primary cancers after an index head and neck cancer: subsite-specific trends in the era of human papillomavirus-associated oropharyngeal cancer. J Clin Oncol : Off J Am Soc Clin Oncol. 2011;29(6):739–46. doi: 10.1200/JCO.2010.31.8311.CrossRefGoogle Scholar
  17. 17.
    Ishikawa S, Nakagawa T, Miyahara R, Kawano Y, Takenaka K, Yanagihara K, et al. Expression of MDA-7/IL-24 and its clinical significance in resected non-small cell lung cancer. Clin Cancer Res : Off J Am Assoc Cancer Res. 2005;11(3):1198–202.Google Scholar
  18. 18.
    Wang L, Wang Y, Bian H, Pu Y, Guo C. Molecular characteristics of homologous salivary adenoid cystic carcinoma cell lines with different lung metastasis ability. Oncol Rep. 2013;30(1):207–12. doi: 10.3892/or.2013.2460.PubMedGoogle Scholar
  19. 19.
    Vikram B. Changing patterns of failure in advanced head and neck cancer. Arch Otolaryngol. 1984;110(9):564–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Garavello W, Ciardo A, Spreafico R, Gaini RM. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2006;132(7):762–6. doi: 10.1001/archotol.132.7.762.PubMedCrossRefGoogle Scholar
  21. 21.
    Rennemo E, Zatterstrom U, Boysen M. Impact of second primary tumors on survival in head and neck cancer: an analysis of 2,063 cases. Laryngoscope. 2008;118(8):1350–6. doi: 10.1097/MLG.0b013e318172ef9a.PubMedCrossRefGoogle Scholar
  22. 22.
    Lin K, Patel SG, Chu PY, Matsuo JM, Singh B, Wong RJ, et al. Second primary malignancy of the aerodigestive tract in patients treated for cancer of the oral cavity and larynx. Head Neck. 2005;27(12):1042–8. doi: 10.1002/hed.20272.PubMedCrossRefGoogle Scholar
  23. 23.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33. doi: 10.1007/s00418-008-0435-6.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Knosel T, Emde V, Schluns K, Schlag PM, Dietel M, Petersen I. Cytokeratin profiles identify diagnostic signatures in colorectal cancer using multiplex analysis of tissue microarrays. Cell Oncol : Off J Int Soc Cell Oncol. 2006;28(4):167–75.Google Scholar
  26. 26.
    Vaidya MM, Kanojia D. Keratins: markers of cell differentiation or regulators of cell differentiation? J Biosci. 2007;32(4):629–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 1980;19(4):1033–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis. FASEB J : Off Publ Fed Am Soc Exp Biol. 2010;24(11):4133–52. doi: 10.1096/fj.09-151449.CrossRefGoogle Scholar
  29. 29.
    Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, et al. Mechanism of in vitro pancreatic cancer cell growth inhibition by melanoma differentiation-associated gene-7/interleukin-24 and perillyl alcohol. Cancer Res. 2008;68(18):7439–47. doi: 10.1158/0008-5472.CAN-08-0072.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Yacoub A, Park MA, Gupta P, Rahmani M, Zhang G, Hamed H, et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther. 2008;7(2):297–313. doi: 10.1158/1535-7163.MCT-07-2166.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, et al. PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res. 2010;70(3):1120–9. doi: 10.1158/0008-5472.CAN-09-4043.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, et al. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res. 2006;66(16):8182–91. doi: 10.1158/0008-5472.CAN-06-0577.PubMedCrossRefGoogle Scholar
  33. 33.
    Yacoub A, Liu R, Park MA, Hamed HA, Dash R, Schramm DN, et al. Cisplatin enhances protein kinase R-like endoplasmic reticulum kinase- and CD95-dependent melanoma differentiation-associated gene-7/interleukin-24-induced killing in ovarian carcinoma cells. Mol Pharmacol. 2010;77(2):298–310. doi: 10.1124/mol.109.061820.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, et al. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene. 2003;22(54):8758–73. doi: 10.1038/sj.onc.12068911206891.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Lin Wang
    • 1
  • Zhien Feng
    • 1
  • Huanhuan Wu
    • 1
  • Shuai Zhang
    • 1
  • Yinfei Pu
    • 1
  • Huan Bian
    • 1
  • Yixiang Wang
    • 2
  • Chuanbin Guo
    • 1
  1. 1.Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingPeople’s Republic of China
  2. 2.Central LaboratoryPeking University School and Hospital of StomatologyBeijingPeople’s Republic of China

Personalised recommendations