Tumor Biology

, Volume 35, Issue 11, pp 10911–10918 | Cite as

Significant association among the Fas -670 A/G (rs1800682) polymorphism and esophageal cancer, hepatocellular carcinoma, and prostate cancer susceptibility: a meta-analysis

  • Tao Liu
  • Li Zuo
  • Lin Li
  • Lei Yin
  • Kai Liang
  • Hongyuan Yu
  • Hui Ren
  • Wen Zhou
  • Hongwei Jing
  • Yang Liu
  • Chuize Kong
Research Article


The Fas gene plays a key role in regulation of apoptotic cell death, and corruption of this signaling pathway has been shown to participate in immune escape and tumorgenesis. Single-nucleotide polymorphism in the promoter of Fas gene at position -670 A/G may affect its expression and play an important role in the pathology of many kinds of cancer. The association between Fas -670 A/G polymorphism and cancer risk is still controversial and ambiguous. Therefore, we conducted a meta-analysis of the currently literature to clarify this relationship. We conducted a search in the PubMed, EMbase, CNKI, and WanFang databases, covering all papers published by May 5, 2014. Overall, 59 case–control studies with 17,035 cases and 23,155 controls were retrieved based on the search criteria for cancer susceptibility related to -670 A/G polymorphism in Fas gene. Odds ratios (OR) and 95 % confidence intervals (CI) revealed association strengths. Although no significant relationship was detected between Fas -670 A/G polymorphism and whole cancer risk, in the ethnicity subgroup, significant associations were found in three types of cancer: prostate cancer (OR = 1.06, 95 % CI = 1.01–1.11 for A-allele vs. G-allele); hepatocellular carcinoma (OR = 0.89, 95 % CI = 0.80–0.99 for AG vs. GG); esophageal cancer (OR = 0.95, 95 % CI = 0.92–0.99 for AA + AG vs. GG). Moreover, lower cancer risk was found in smokers carried A-allele, when compared to smokers carried the GG genotype. The Fas -670 A/G polymorphism may be associated with esophageal cancer, hepatocellular carcinoma, and prostate cancer susceptibility from our meta-analysis. Studies with larger samples and gene–environment interactions are warranted to understand the role of Fas -670 A/G polymorphism for cancer risk.


Fas -670 A/G Esophageal cancer Hepatocellular carcinoma Prostate cancer Smoking Meta-analysis Polymorphism 


  1. 1.
    Vineis P, Wild CP. Global cancer patterns: causes and prevention. Lancet. 2004;383:549–57.CrossRefGoogle Scholar
  2. 2.
    Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, et al. Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA. 2008;299:2423–36.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Zintzaras E. (2010) The generalized odds ratio as a measure of genetic risk effect in the analysis and meta-analysis of association studies. Stat Appl Genet Mol Biol 9:Article21.Google Scholar
  4. 4.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;44:646–74.CrossRefGoogle Scholar
  6. 6.
    Kaufmann T, Strasser A, Jost PJ. Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ. 2012;19:42–50.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Han W, Zhou Y, Zhong R, Wu C, Song R, Liu L, et al. Functional polymorphisms in FAS/FASL system increase the risk of neuroblastoma in Chinese population. PLoS One. 2013;8:e71656.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang J, Gao J, Li Y, Zhao X, Gao W, Peng L, et al. Functional polymorphisms in FAS and FASL contribute to risk of squamous cell carcinoma of the larynx and hypopharynx in a Chinese population. Gene. 2013;524:193–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Tong N, Zhang L, Sheng X, Wang M, Zhang Z, Fang Y, et al. Functional polymorphisms in FAS, FASL and CASP8 genes and risk of childhood acute lymphoblastic leukemia: a case-control study. Leuk Lymphoma. 2012;53:1360–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Inazawa J, Itoh N, Abe T, Nagata S. Assignment of the human Fas antigen gene (Fas) to 10q24.1. Genomics. 1992;14:821–2.PubMedCrossRefGoogle Scholar
  12. 12.
    Wu J, Siddiqui J, Nihal M, Vonderheid EC, Wood GS. Structural alterations of the FAS gene in cutaneous T-cell lymphoma (CTCL). Arch Biochem Biophys. 2011;508:185–91.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Huang QR, Morris D, Manolios N. Identification and characterization of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 1997;34:577–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22:719–48.PubMedGoogle Scholar
  15. 15.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Hayashino Y, Noguchi Y, Fukui T. Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol. 2005;15:235–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Shao P, Ding Q, Qin C, Wang M, Tang J, Zhu J, et al. Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of prostate cancer in a Chinese population. Prostate. 2011;71:1122–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu J, Qin C, Wang M, Yan F, Ju X, Meng X, et al. Functional polymorphisms in cell death pathway genes and risk of renal cell carcinoma. Mol Carcinog. 2010;49:810–7.PubMedGoogle Scholar
  19. 19.
    Wang LH, Ting SC, Chen CH, Tsai CC, Lung O, et al. Polymorphisms in the apoptosis-associated genes FAS and FASL and risk of oral cancer and malignant potential of oral premalignant lesions in a Taiwanese population. J Oral Pathol Med. 2010;39:155–61.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou RM, Wang N, Chen ZF, Duan YN, Sun DL, Li Y. Polymorphisms in promoter region of FAS and FASL gene and risk of cardia gastric adenocarcinoma. J Gastroenterol Hepatol. 2010;25:555–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang M, Wu D, Tan M, Gong W, Xue H, Shen H, et al. FAS and FAS ligand polymorphisms in the promoter regions and risk of gastric cancer in Southern China. Biochem Genet. 2009;47:559–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Yang M, Sun T, Wang L, Yu D, Zhang X, Miao X, et al. Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin Cancer Res. 2008;14:3230–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu PI, Lu PJ, Wang EM, Ger LP, Lo GH, et al. Polymorphisms of death pathway genes FAS and FASL and risk of premalignant gastric lesions. Anticancer Res. 2008;28:97–103.PubMedGoogle Scholar
  24. 24.
    Koshkina NV, Kleinerman ES, Li G, Zhao CC, Wei Q, Sturgis EM. Exploratory analysis of Fas gene polymorphisms in pediatric osteosarcoma patients. J Pediatr Hematol Oncol. 2007;29:815–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Kang S, Dong SM, Seo SS, Kim JW, Park SY. FAS -1377 G/A polymorphism and the risk of lymph node metastasis in cervical cancer. Cancer Genet Cytogenet. 2008;180:1–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Farre L, Bittencourt AL, Silva-Santos G, Almeida A, Silva AC, Decanine D, et al. Fas 670 promoter polymorphism is associated to susceptibility, clinical presentation, and survival in adult T cell leukemia. J Leukoc Biol. 2008;83:220–2.PubMedCrossRefGoogle Scholar
  27. 27.
    Crew KD, Gammon MD, Terry MB, Zhang FF, Agrawal M, Eng SM, et al. Genetic polymorphisms in the apoptosis-associated genes FAS and FASL and breast cancer risk. Carcinogenesis. 2007;28:2548–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Jung YJ, Kim YJ, Kim LH, Lee SO, Park BL, Shin HD, et al. Putative association of Fas and FasL gene polymorphisms with clinical outcomes of hepatitis B virus infection. Intervirology. 2007;50:369–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Lima L, Morais A, Lobo F, Calais-da-Silva FM, Calais-da-Silva FE, Medeiros R. Association between FAS polymorphism and prostate cancer development. Prostate Cancer Prostatic Dis. 2008;11:94–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang B, Sun T, Xue L, Han X, Zhang B, Lu N, et al. Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis. 2007;28:1067–73.PubMedCrossRefGoogle Scholar
  31. 31.
    Park SH, Choi JE, Kim EJ, Jang JS, Lee WK, Cha SI, et al. Polymorphisms in the FAS and FASL genes and risk of lung cancer in a Korean population. Lung Cancer. 2006;54:303–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ikehara SK, Ikehara Y, Matsuo K, Hirose K, Niwa T, Ito H, et al. A polymorphism of C-to-T substitution at -31 IL1B is associated with the risk of advanced gastric adenocarcinoma in a Japanese population. J Hum Genet. 2006;51:927–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang Z, Wang LE, Sturgis EM, El-Naggar AK, Hong WK, Amos CI, et al. Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2006;12:5596–602.PubMedCrossRefGoogle Scholar
  34. 34.
    Li C, Larson D, Zhang Z, Liu Z, Strom SS, Gershenwald JE, et al. Polymorphisms of the FAS and FAS ligand genes associated with risk of cutaneous malignant melanoma. Pharmacogenet Genomics. 2006;16:253–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Li C, Wu W, Liu J, Qian L, Li A, Yang K, et al. Functional polymorphisms in the promoter regions of the FAS and FAS ligand genes and risk of bladder cancer in south China: a case-control analysis. Pharmacogenet Genomics. 2006;16:245–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Bel Hadj Jrad B, Mahfouth W, Bouaouina N, Gabbouj S, Ahmed SB, Ltaïef M, et al. A polymorphism in FAS gene promoter associated with increased risk of nasopharyngeal carcinoma and correlated with anti-nuclear autoantibodies induction. Cancer Lett. 2006;233:21–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Sun T, Zhou Y, Li H, Han X, Shi Y, Wang L, et al. FASL -844C polymorphism is associated with increased activation-induced T cell death and risk of cervical cancer. J Exp Med. 2005;202:967–74.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst. 2004;96:1030–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Lai HC, Sytwu HK, Sun CA, Yu MH, Yu CP, Liu HS, et al. Single nucleotide polymorphism at Fas promoter is associated with cervical carcinogenesis. Int J Cancer. 2003;103:221–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003;63:4327–30.PubMedGoogle Scholar
  41. 41.
    Nelson HH, Kelsey KT, Bronson MH, Mott LA, Karagas MR. Fas/APO-1 promoter polymorphism is not associated with non-melanoma skin cancer. Cancer Epidemiol Biomarkers Prev. 2001;10:809–10.PubMedGoogle Scholar
  42. 42.
    Dybikowska A, Sliwinski W, Emerich J, Podhajska AJ. Evaluation of Fas gene promoter polymorphism in cervical cancer patients. Int J Mol Med. 2004;14:475–8.PubMedGoogle Scholar
  43. 43.
    Kupcinskas J, Wex T, Bornschein J, Selgrad M, Leja M, Juozaityte E, et al. Lack of association between gene polymorphisms of Angiotensin converting enzyme, Nod-like receptor 1, Toll-like receptor 4, FAS/FASL and the presence of Helicobacter pylori-induced premalignant gastric lesions and gastric cancer in Caucasians. BMC Med Genet. 2011;12:112.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Valibeigi B, Amirghofran Z, Golmoghaddam H, Hajihosseini R, Kamazani FM. (2013) Fas gene variants in childhood acute lymphoblastic leukemia and association with prognosis. Pathol Oncol Res 2013 Nov 12. [Epub ahead of print]Google Scholar
  45. 45.
    Kim SS, Hong SJ, Ahn YG, Kim BS, Yuh YJ, Han KY, et al. Apo-1/Fas (CD95) gene polymorphism in lorean hepatocellular carcinpoma patients. Korean J Phyaiol Pharmacol. 2003;7:29–31.Google Scholar
  46. 46.
    Chang L, Xiao MH, Yang H, Guan W, Guo XL, Li W. Association between polymorphisms of FAS gene and FAS ligand in cell death pathway with risk of bladder cancer. Chin J Exp Surg. 2013;30:563–6.Google Scholar
  47. 47.
    Lai HC, Lin WY, Lin YW, Chang CC, Yu MH, Chen CC, et al. Genetic polymorphisms of FAS and FASL (CD95/CD95L) genes in cervical carcinogenesis: an analysis of haplotype and gene-gene interaction. Gynecol Oncol. 2005;99:113–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Li Y, Hao YL, Kang S, Zhou RM, Wang N, Qi BL. Genetic polymorphisms in the Fas and FasL genes are associated with epithelial ovarian cancer risk and clinical outcomes. Gynecol Oncol. 2013;128:584–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Qureshi A, Nan H, Dyer M, Han J. Polymorphisms of FAS and FAS ligand genes and risk of skin cancer. J Dermatol Sci. 2010;58:78–80.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wang LE, Cheng L, Spitz MR, Wei Q. Fas A670G polymorphism, apoptotic capacity in lymphocyte cultures, and risk of lung cancer. Lung Cancer. 2003;42:1–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Zoodsma M, Nolte IM, Schipper M, Oosterom E, van der Steege G, de Vries EG, et al. Interleukin-10 and Fas polymorphisms and susceptibility for (pre) neoplastic cervical disease. Int J Gynecol Cancer. 2005;15(3):282–90.PubMedCrossRefGoogle Scholar
  52. 52.
    Ueda M, Terai Y, Kanda K, Kanemura M, Takehara M, Yamaguchi H, et al. Fas gene promoter -670 polymorphism in gynecological cancer. Int J Gynecol Cancer. 2006;16(1):179–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Jain M, Kumar S, Lal P, Tiwari A, Ghoshal UC, Mittal B. Role of BCL2 (ala43thr), CCND1 (G870A) and FAS (A-670G) polymorphisms in modulating the risk of developing esophageal cancer. Cancer Detect Prev. 2007;31:225–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Erdogan M, Karadeniz M, Berdeli A, Tamsel S, Ertan Y, Uluer H, et al. Fas/Fas ligand gene polymorphism in patients with papillary thyroid cancer in the Turkish population. J Endocrinol Invest. 2007;30:411–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang H, Sun XF, Synnerstad I, Rosdahl I. Importance of FAS-1377, FAS-670, and FASL-844 polymorphisms in tumor onset, progression, and pigment phenotypes of Swedish patients with melanoma: a case-control analysis. Cancer J. 2007;13:233–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Kordi Tamandani DM, Sobti RC, Shekari M. Association of Fas-670 gene polymorphism with risk of cervical cancer in North Indian population. Clin Exp Obstet Gynecol. 2008;35:183–6.PubMedGoogle Scholar
  57. 57.
    Zucchi F, da Silva ID, Ribalta JC, de Souza NC, Speck NM, Girão MJ, et al. Fas/CD95 promoter polymorphism gene and its relationship with cervical carcinoma. Eur J Gynaecol Oncol. 2009;30:142–4.PubMedGoogle Scholar
  58. 58.
    Zhu Q, Wang T, Ren J, Hu K, Liu W, Wu G. FAS-670A/G polymorphism: a biomarker for the metastasis of nasopharyngeal carcinoma in a Chinese population. Clin Chim Acta. 2010;411:179–83.PubMedCrossRefGoogle Scholar
  59. 59.
    Gangwar R, Mittal RD. Association of selected variants in genes involved in cell cycle and apoptosis with bladder cancer risk in North Indian population. DNA Cell Biol. 2010;29:349–56.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim HJ, Jin XM, Kim HN, Lee IK, Park KS, Park MR, et al. Fas and FasL polymorphisms are not associated with acute myeloid leukemia risk in Koreans. DNA Cell Biol. 2010;29:619–24.PubMedCrossRefGoogle Scholar
  61. 61.
    Mandal RK, Mittal RD. Are cell cycle and apoptosis genes associated with prostate cancer risk in North Indian population? Urol Oncol. 2012;30:555–61.PubMedCrossRefGoogle Scholar
  62. 62.
    Coakley G, Manolios N, Loughran Jr TP, Panayi GS, Lanchbury JS. A Fas promoter polymorphism at position -670 in the enhancer region does not confer susceptibility to Felty’s and large granular lymphocyte syndromes. Rheumatology (Oxford). 1999;38:883–6.CrossRefGoogle Scholar
  63. 63.
    Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, et al. Functional polymorphisms of FAS and FASL gene and risk of breast cancer - pilot study of 134 cases. PLoS One. 2013;8:e53075.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Hu Y, Jin LY, Huang X, GEN PL. Association between Fas -670 gene polymorphism and gastric cancer risk in Qinghai region in China. Shang Dong Yi Yao. 2011;51:45–6.Google Scholar
  65. 65.
    Li H, Guo HY, Sun T, Zhou YF, Lin DX, et al. Association between Fas/FasL gene promoter polymorphisms and pathogenic risk of cervical cancer. Chin J Oncol. 2009;31:38–41.Google Scholar
  66. 66.
    Zhang J, Liu Q, Mao HT. Analyzing of Fas-670 gene polymorphism in hepatocarcinoma tissue. Chin J Hepatol. 2009;17:630–1.Google Scholar
  67. 67.
    Chen XB, Chen GL, Liu JN, Yang JZ, Yu DK, Lin DX, et al. Genetic polymorphisms in STK15 and MMP-2 associated susceptibility to esophageal cancer in Mongolian population. Chin J Prev Med. 2009;43:559–63.Google Scholar
  68. 68.
    Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993;75:1169–78.PubMedCrossRefGoogle Scholar
  69. 69.
    Crnogorac-Jurcevic T, Efthimiou E, Capelli P, Blaveri E, Baron A, Terris B, et al. Gene expression profiles of pancreatic cancer and stromal desmoplasia. Oncogene. 2001;20:7437–46.PubMedCrossRefGoogle Scholar
  70. 70.
    Müschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med (Berl). 2000;78:312–25.CrossRefGoogle Scholar
  71. 71.
    Pharoah PD, Dunning AM, Ponder BA, Easton DF. Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer. 2004;4:850–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Bijl M, Horst G, Limburg PC, Kallenberg CG. Effects of smoking on activation markers, Fas expression and apoptosis of peripheral blood lymphocytes. Eur J Clin Invest. 2001;31:550–3.PubMedCrossRefGoogle Scholar
  73. 73.
    Suzuki N, Wakisaka S, Takeba Y, Mihara S, Sakane T. Effects of cigarette smoking on Fas/Fas ligand expression of human lymphocytes. Cell Immunol. 1999;192:48–53.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Tao Liu
    • 1
  • Li Zuo
    • 2
  • Lin Li
    • 3
  • Lei Yin
    • 1
  • Kai Liang
    • 4
  • Hongyuan Yu
    • 1
  • Hui Ren
    • 5
  • Wen Zhou
    • 1
  • Hongwei Jing
    • 1
  • Yang Liu
    • 1
  • Chuize Kong
    • 1
  1. 1.Department of UrologyThe First Hospital of China Medical UniversityShenyangPeoples Republic of China
  2. 2.Department of UrologyChangzhou Second Hospital of Nanjing Medical UniversityChangzhouPeoples Republic of China
  3. 3.Department of RehabilitationGuangdong General HospitalGuangzhouPeoples Republic of China
  4. 4.Department of UrologyHarbinPeoples Republic of China
  5. 5.Department of AnorectalShenYang Anorectal HospitalShenyangPeoples Republic of China

Personalised recommendations