Tumor Biology

, Volume 36, Issue 3, pp 1437–1444 | Cite as

CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo

  • Xingxing He
  • Xinjuan Kong
  • Junwei Yan
  • Jingjun Yan
  • Yunan Zhang
  • Qian Wu
  • Ying Chang
  • Haitao Shang
  • Qian Dou
  • Yuhu Song
  • Fang Liu
Research Article


Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Small molecule CP-31398 was shown to restore mutant p53 tumor suppressor functions in cancer cells. Here, we determined the effects of CP-31398 on the growth of p53-mutated colorectal cancer (CRC) cells in vitro and in vivo. CRC cells which carry p53 mutation in codon 273 were treated with CP-31398 and the control, and the effects of CP-31398 on cell cycle, cell apoptosis, and proliferation were determined. The expression of p53-responsive downstream genes was evaluated by quantitative reverse transcriptase PCR (RT-PCR) and Western blot. CP-31398 was administrated into xenograft tumors created by the inoculation of HT-29 cells, and then the effect of CP-31398 on the growth of xenograft tumors was examined. CP-31398 induced p53 downstream target molecules in cultured HT-29 cells, which resulted in the inhibition of CRC cell growth assessed by the determination of cell cycle, apoptosis, and cell proliferation. In xenograft tumors, CP-31398 modulated the expression of Bax, Bcl-2, caspase 3, cyclin D, and Mdm2 and then blocked the growth of xenograft tumors. CP-31398 would be developed as a therapeutic candidate for p53-mutated CRC due to the restoration of mutant p53 tumor suppressor functions.


Mutant p53 Colorectal cancer CP-31398 Apoptosis Cell cycle 



This work was supported by the National Natural Science Foundation of China (Nos. 81072003, 81270506, 81101824, and 81302112), the Outstanding Youth Science Foundation of Tongji Hospital (No. YXQN005), the Youth Sciences and Technology Chenguang Planning of Wuhan (No. 2014070404010219), and the Fundamental Research Funds for the Central Universities (No. 2014QN084).

Conflicts of interest


Supplementary material

13277_2014_2389_MOESM1_ESM.doc (71 kb)
ESM 1 (DOC 71 kb)


  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.CrossRefPubMedGoogle Scholar
  3. 3.
    Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137:609–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol. 2010;2:a001107.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol. 2011;223:116–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Muller PA, Vousden KH. P53 mutations in cancer. Nat Cell Biol. 2013;15:2–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Lozano G. Mouse models of p53 functions. Cold Spring Harb Perspect Biol. 2010;2:a001115.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26:1268–86.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lane DP, Cheok CF, Lain S. P53-based cancer therapy. Cold Spring Harb Perspect Biol. 2010;2:a001222.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011;2011:978312.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:3648–50.CrossRefGoogle Scholar
  12. 12.
    Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov. 2008;7:979–87.CrossRefPubMedGoogle Scholar
  13. 13.
    Rao CV, Swamy MV, Patlolla JM, Kopelovich L. Suppression of familial adenomatous polyposis by cp-31398, a tp53 modulator, in apcmin/+mice. Cancer Res. 2008;68:7670–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rao CV, Steele VE, Swamy MV, Patlolla JM, Guruswamy S, Kopelovich L. Inhibition of azoxymethane-induced colorectal cancer by cp-31398, a tp53 modulator, alone or in combination with low doses of celecoxib in male f344 rats. Cancer Res. 2009;69:8175–82.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang Z, Liu F, Tu W, Chang Y, Yao J, Wu W, et al. Embryonic liver fodrin involved in hepatic stellate cell activation and formation of regenerative nodule in liver cirrhosis. J Cell Mol Med. 2012;16:118–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Song Y, Tu W, He X, Lin J, Liu F. Beta-2 spectrin is involved in hepatocyte proliferation through the interaction of tgfbeta/smad and pi3k/akt signalling. Liver Int Off J Int Assoc Study Liver. 2012;32:1103–11.CrossRefGoogle Scholar
  17. 17.
    He XX, Chang Y, Meng FY, Wang MY, Xie QH, Tang F, et al. Microrna-375 targets aeg-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69.CrossRefPubMedGoogle Scholar
  18. 18.
    Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002;2:594–604.CrossRefPubMedGoogle Scholar
  19. 19.
    Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst. 1994;86:1458–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med. 1996;2:985–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Guo J, Xin H. Chinese gene therapy splicing out the west? Science. 2006;314:1232–5.CrossRefPubMedGoogle Scholar
  22. 22.
    North S, El-Ghissassi F, Pluquet O, Verhaegh G, Hainaut P. The cytoprotective aminothiol wr1065 activates p21waf-1 and down regulates cell cycle progression through a p53-dependent pathway. Oncogene. 2000;19:1206–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 2002;8:282–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV, et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci U S A. 2002;99:937–42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR. Characterization of the p53-rescue drug cp-31398 in vitro and in living cells. Oncogene. 2002;21:2119–29.CrossRefPubMedGoogle Scholar
  26. 26.
    Peng Y, Li C, Chen L, Sebti S, Chen J. Rescue of mutant p53 transcription function by ellipticine. Oncogene. 2003;22:4478–87.CrossRefPubMedGoogle Scholar
  27. 27.
    Demma MJ, Wong S, Maxwell E, Dasmahapatra B. Cp-31398 restores DNA-binding activity to mutant p53 in vitro but does not affect p53 homologs p63 and p73. J Biol Chem. 2004;279:45887–96.CrossRefPubMedGoogle Scholar
  28. 28.
    Tang X, Zhu Y, Han L, Kim AL, Kopelovich L, Bickers DR, et al. Cp-31398 restores mutant p53 tumor suppressor function and inhibits uvb-induced skin carcinogenesis in mice. J Clin Invest. 2007;117:3753–64.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu J, Timares L, Heilpern C, Weng Z, Li C, Xu H, et al. Targeting wild-type and mutant p53 with small molecule cp-31398 blocks the growth of rhabdomyosarcoma by inducing reactive oxygen species-dependent apoptosis. Cancer Res. 2010;70:6566–76.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science. 1999;286:2507–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Wang W, Takimoto R, Rastinejad F, El-Deiry WS. Stabilization of p53 by cp-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or mdm2 binding. Mol Cell Biol. 2003;23:2171–81.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J, el-Deiry WS. The mutant p53-conformation modifying drug, cp-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 2002;1:47–55.CrossRefPubMedGoogle Scholar
  33. 33.
    Rodrigues NR, Rowan A, Smith ME, Kerr IB, Bodmer WF, Gannon JV, et al. P53 mutations in colorectal cancer. Proc Natl Acad Sci U S A. 1990;87:7555–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Liu Y, Bodmer WF. Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci U S A. 2006;103:976–81.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xingxing He
    • 1
  • Xinjuan Kong
    • 2
  • Junwei Yan
    • 1
  • Jingjun Yan
    • 1
  • Yunan Zhang
    • 1
  • Qian Wu
    • 1
  • Ying Chang
    • 1
  • Haitao Shang
    • 3
  • Qian Dou
    • 2
  • Yuhu Song
    • 3
  • Fang Liu
    • 4
  1. 1.Institute of Liver Diseases, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.Department of GastroenterologyThe Affiliated Hospital of Medical College of Qingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Department of Gastroenterology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  4. 4.Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations