Tumor Biology

, Volume 35, Issue 11, pp 10737–10745 | Cite as

Circulating levels and clinical implications of epithelial membrane antigen and cytokeratin-1 in women with breast cancer: can their ratio improve the results?

  • Abdelfattah M. Attallah
  • Mohamed El-Far
  • Mohamed M. Omran
  • Sanaa O. Abdallah
  • Mohamed A. El-desouky
  • Ibrahim El-Dosoky
  • Mohamed A. Abdelrazek
  • Ahmed A. Attallah
  • Mohamed A. Elweresh
  • Gamal E. Abdel Hameed
  • Hadil A. Shawki
  • Karim S. Salama
  • Ahmed M. El-Waseef
Research Article


Immunohistochemical studies proved that the presence of breast cancer (BrCa) is accompanied by elevated levels of epithelial membrane antigen (EMA) and decreased levels of cytokeratin-1 (CK1). We, therefore, hypothesize that the serum EMA/CK1 ratio may serve as a promising biomarker for early diagnosis of breast cancer. The circulating levels of EMA and CK1 were determined by Western blot and enzyme-linked immunosorbent assay (ELISA) in sera from 102 women with BrCa and 90 women as controls (40 with benign breast disease and 50 healthy). EMA at 130 kDa and CK1 at 67 kDa were identified, purified, and quantified in sera of BrCa patients using ELISA. EMA/CK1 ratio values were found to discriminate BrCa patients from controls (P < 0.0001) with high diagnostic ability (area under the curve [AUC] = 0.901, sensitivity = 82, specificity = 76). The sensitivity and specificity for early-stage (≤T2) BrCa were 72 and 76 %, respectively. The ratio values of patients with late-stage (>T2) tumors were significantly higher than those of patients with early-stage (≤T2) tumors. Moreover, higher grades (grades 2–3) were associated with higher values than grade 1 tumors. AUC values in different BrCa patients who had early stage, low grade, or size ≤2 cm were 0.855, 0.762, and 0.839, respectively. AUC values of patients with positive lymph node or positive distant metastasis were 0.907 and 0.913, respectively. We show for the first time the impact of serum EMA and CK1 ratio in BrCa detection. Differential EMA/CK1 values may serve as a diagnostic marker in early-stage breast cancer patients.


Breast cancer Biomarkers EMA CK1 Serum 



The authors would like to thank the staff of the Mansoura University Oncology Center, Mansoura, Egypt, for their assistances in this study. This work has been completely supported financially and carried out at the Biotechnology Research Center, New Damietta, Egypt.

Conflicts of interest



  1. 1.
    Travier N, Fonseca-Nunes A, Javierre C, et al. Effect of a diet and physical activity intervention on body weight and nutritional patterns in overweight and obese breast cancer survivors. Med Oncol. 2014;31:783.PubMedCrossRefGoogle Scholar
  2. 2.
    Wang PY, Gong HT, Li BF, et al. Higher expression of circulating miR-182 as a novel biomarker for breast cancer. Oncol Lett. 2013;6:1681–6.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Corsetti V, Houssami N, Ghirardi M, et al. Evidence of the effect of adjunct ultrasound screening in women with mammography-negative dense breasts: interval breast cancers at 1 year follow-up. Eur J Cancer. 2011;47:1021–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Tabár L, Vitak B, Chen TH-H, et al. Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology. 2011;260:658–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang G, Sun X, Lv H, Yang X, Kang X. Serum amyloid A: a new potential serum marker correlated with the stage of breast cancer. Oncol Lett. 2012;3:940–4.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun Y, Zhang R, Wang M, Zhang Y, Qi J, Li J. SOX2 autoantibodies as noninvasive serum biomarker for breast carcinoma. Cancer Epidemiol Biomarkers Prev. 2012;21:2043–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20:332–42.PubMedCrossRefGoogle Scholar
  9. 9.
    Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol. 2008;70:431–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Taylor-Papadimitriou J. Report on the first international workshop on carcinoma-associated mucins. Int J Cancer. 1991;49:1–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Gion M, Mione R, Leon AE, Dittadi R. Comparison of the diagnostic accuracy of CA27.29 and CA15.3 in primary breast cancer. Clin Chem. 1999;45:630–7.PubMedGoogle Scholar
  13. 13.
    Attallah AM, Abdallah SO, El Sayed AS, et al. Non-invasive predictive score of fibrosis stages in chronic hepatitis C patients based on epithelial membrane antigen in the blood in combination with routine laboratory markers. Hepatol Res. 2011;41:1075–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Smolarz B, Krawczyk T, Westfal B, et al. Comparison of one-step nucleic acid amplification (OSNA) method and routine histological investigation for intraoperative detection of lymph node metastasis in Polish women with breast cancer. Pol J Pathol. 2013;64:104–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Oloomi M, Yardehnavi N, Bouzari S, Moazzezy N. Non-coding CK19 RNA in peripheral blood and tissue of breast cancer patients. Acta Med Iran. 2013;51:75–86.PubMedGoogle Scholar
  16. 16.
    Alshareeda AT, Soria D, Garibaldi JM, et al. Characteristics of basal cytokeratin expression in breast cancer. Breast Cancer Res Treat. 2013;139:23–37.PubMedCrossRefGoogle Scholar
  17. 17.
    Shao MM, Chan SK, Yu AM, et al. Keratin expression in breast cancers. Virchows Arch. 2012;461:313–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Towbin H, Stachlin T, Gordou J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Attallah AM, Helmi H, el-Helali E, el-Mohamadi H. A dipstick, dot-ELISA assay for the rapid and early detection of bladder cancer. Cancer Detect Prev. 1991;15:495–9.PubMedGoogle Scholar
  21. 21.
    Attallah AM, El-Far M, Abdel Malak CA, et al. Evaluation of cytokeratin-1 in the diagnosis of hepatocellular carcinoma. Clin Chim Acta. 2011;412:2310–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–77.PubMedGoogle Scholar
  23. 23.
    Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Sinn BV, von Minckwitz G, Denkert C, et al. Evaluation of Mucin-1 protein and mRNA expression as prognostic and predictive markers after neoadjuvant chemotherapy for breast cancer. Ann Oncol. 2013;24:2316–24.PubMedCrossRefGoogle Scholar
  25. 25.
    Croce MV, Isla-Larrain MT, Demichelis SO, Gori JR, Price MR, Segal-Eiras A. Tissue and serum MUC1 mucin detection in breast cancer patients. Breast Cancer Res Treat. 2003;81:195–207.PubMedCrossRefGoogle Scholar
  26. 26.
    Schroeder JA, Masri AA, Adriance MC, et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene. 2004;23:5739–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Croce MV, Isla-Larrain MT, Rua CE, Rabassa ME, Gendler SJ, Segal-Eiras A. Patterns of MUC1 tissue expression defined by an anti-MUC1 cytoplasmic tail monoclonal antibody in breast cancer. J Histochem Cytochem. 2003;51:781–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Bratthauer GL, Moinfar F, Stamatakos MD, et al. Combined E-cadherin and high molecular weight cytokeratin immunoprofile differentiates lobular, ductal, and hybrid mammary intraepithelial neoplasias. Hum Pathol. 2002;33:620–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Boecker W, Buerger H, Schmitz K, et al. Ductal epithelial proliferations of the breast: a biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol. 2001;195:415–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Rakha EA, Boyce RW, Abd El-Rehim D, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 2005;18:1295–304.PubMedCrossRefGoogle Scholar
  31. 31.
    Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem. 1995;270:30093–101.PubMedCrossRefGoogle Scholar
  32. 32.
    Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ. MUC1 alters betacatenin-dependent tumor formation and promotes cellular invasion. Oncogene. 2003;22:1324–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Merlo G, Siddiqui J, Cropp C, et al. DF3 tumor-associated antigen gene is located in a region on chromosome 1q frequently altered in primary human breast cancer. Cancer Res. 1989;49:6966–71.PubMedGoogle Scholar
  34. 34.
    Lacunza E, Baudis M, Colussi AG, Segal-Eiras A, Croce MV, Abba MC. MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genet Cytogenet. 2010;201:102–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Khodarev N, Ahmad R, Rajabi H, et al. Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer. Oncogene. 2010;29:920–9.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Ahmad R, Raina D, Joshi MD, Kawano T, Kharbanda S, Kufe D. MUC1-C oncoprotein functions as a direct activator of the NF-κB p65 transcription factor. Cancer Res. 2009;69:7013–21.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Abe M, Kufe D. Transcriptional regulation of the DF3 gene expression in human MCF-7 breast carcinoma cells. J Cell Physiol. 1990;143:226–31.PubMedCrossRefGoogle Scholar
  38. 38.
    Abe M, Kufe D. Characterization of cis-acting elements regulating transcription of the human DF3 breast carcinoma-associated antigen (MUC1) gene. Proc Natl Acad Sci U S A. 1993;90:282–6.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rajabi H, Jin C, Ahmad R, McClary C, Kufe D. Mucin 1 oncoprotein expression is suppressed by the miR-125b oncomir. Genes Cancer. 2010;1:62–5.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70:378–87.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Whittock NV, Ashton GH, Griffiths WA, Eady RA, McGrath JA. New mutations in keratin 1 that cause bullous congenital ichthyosiform erythroderma and keratin 2e that cause ichthyosis bullosa of Siemens. Br J Dermatol. 2001;145:330–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science. 1994;265:2088–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Tirkkonen M, Johannsson O, Agnarsson BA, et al. Distinct somatic genetic changes associated with tumor progression in carriers of BRCA1 and BRCA2 germ-line mutations. Cancer Res. 1997;57:1222–7.PubMedGoogle Scholar
  44. 44.
    Knuutila S, Aalto Y, Autio K, et al. DNA copy number losses in human neoplasms. Am J Pathol. 1999;155:683–94.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Hewala TI, Abd El-Monaim NA, Anwar M, Ebied SA. The clinical significance of serum soluble Fas and p53 protein in breast cancer patients: comparison with serum CA 15-3. Pathol Oncol Res. 2012;18:841–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Guadagni F, Ferroni P, Carlini S, et al. A re-evaluation of carcinoembryonic antigen (CEA) as a serum marker for breast cancer: a prospective longitudinal study. Clin Cancer Res. 2001;7:2357–62.PubMedGoogle Scholar
  47. 47.
    Marić P, Ozretić P, Levanat S, Oresković S, Antunac K, Beketić-Oresković L. Tumor markers in breast cancer—evaluation of their clinical usefulness. Coll Antropol. 2011;35:241–7.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Abdelfattah M. Attallah
    • 1
  • Mohamed El-Far
    • 2
  • Mohamed M. Omran
    • 3
  • Sanaa O. Abdallah
    • 4
  • Mohamed A. El-desouky
    • 4
  • Ibrahim El-Dosoky
    • 5
  • Mohamed A. Abdelrazek
    • 1
  • Ahmed A. Attallah
    • 1
  • Mohamed A. Elweresh
    • 1
  • Gamal E. Abdel Hameed
    • 1
  • Hadil A. Shawki
    • 1
  • Karim S. Salama
    • 1
  • Ahmed M. El-Waseef
    • 2
  1. 1.Research & Development DepartmentBiotechnology Research CenterNew DamiettaEgypt
  2. 2.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  3. 3.Chemistry Department, Faculty of ScienceHelwan UniversityCairoEgypt
  4. 4.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  5. 5.Pathology Department, Faculty of MedicineMansoura UniversityMansouraEgypt

Personalised recommendations