Tumor Biology

, Volume 35, Issue 11, pp 10815–10824 | Cite as

Effects of four single nucleotide polymorphisms in microRNA-coding genes on lung cancer risk

  • Xiaohong Fan
  • Zhijun Wu
Research Article


No clear consensus has been reached on the four single nucleotide polymorphisms (miR-196a2 gene rs11614913, miR-146a gene rs2910164, miR-149 gene rs2292832, and miR-499 gene rs3746444) in microRNA-coding genes and lung cancer risk. We performed a meta-analysis in an effort to systematically explore the possible association. A computer retrieval of PubMed, Embase, and Institute for Scientific Information (ISI) Web of Science electronic databases was conducted prior to May 2014. References of retrieved articles were also screened. The fixed effects model and the random effects model were applied for dichotomous outcomes to combine the results of the individual studies. Seven studies including 3,705 cases and 4,099 controls were finally included according to the inclusion criteria. Statistical association could be found between rs11614913 polymorphism and lung cancer [C vs. T: P = 0.01, odds ratio (OR) = 1.11, 95 % confidence interval (CI) 1.03–1.20, P heterogeneity = 0.22, fixed effects model; CC + CT vs. TT: P = 0.01, OR = 1.18, 95 % CI 1.04–1.34, P heterogeneity = 0.32, fixed effects model; CC vs. TT: P = 0.009, OR = 1.24, 95 % CI 1.06–1.45, P heterogeneity = 0.34, fixed effects model]. Subgroup analysis found this association in the East Asians. As for rs2910164 polymorphism and lung cancer risk, significant association could be found in allele comparison (G vs. C: P = 0.03, OR = 0.92, 95 % CI 0.85–0.99, P heterogeneity = 0.15, fixed effects model) and in the dominant genetic model (GG + CG vs. CC: P = 0.03, OR = 0.86, 95 % CI 0.76–0.99, P heterogeneity = 0.31, fixed effects model). In the East Asian subgroup, association could also be found. No association was observed on rs2292832 or rs3746444 polymorphism and lung cancer. Our study suggested that the miR-196a2 gene rs11614913 polymorphism and the miR-146a gene rs2910164 polymorphism might associate with lung cancer risk.


Lung cancer Single nucleotide polymorphism MicroRNA Meta-analysis 


Conflicts of interest



  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Alberg AJ, Brock MV, Samet JM. Epidemiology of lung cancer: looking to the future. J Clin Oncol. 2005;23:3175–85.PubMedCrossRefGoogle Scholar
  3. 3.
    National Comprehensive Cancer Network (NCCN) Non-small cell lung cancer USA. NCCN clinical practice guidelines in oncology: non-small cell lung cancer V.4.2014.Google Scholar
  4. 4.
    National Comprehensive Cancer Network (NCCN) Small cell lung cancer USA. NCCN clinical practice guidelines in oncology: small cell lung cancer V.2.2014.Google Scholar
  5. 5.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet. 2004;20:617–24.PubMedCrossRefGoogle Scholar
  8. 8.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRefGoogle Scholar
  10. 10.
    Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Vannini I, Fanini F, Fabbri M. MicroRNAs as lung cancer biomarkers and key players in lung carcinogenesis. Clin Biochem. 2013;46:918–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, et al. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest. 2008;118:2600–8.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Garcia AI, Buisson M, Bertrand P, Rimokh R, Rouleau E, Lopez BS, et al. Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers. EMBO Mol Med. 2011;3:279–90.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Li Y, Vandenboom 2nd TG, Wang Z, Kong D, Ali S, Philip PA, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res. 2010;70:1486–95.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P, et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci U S A. 2011;108:15840–5.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wang Y, Zheng X, Zhang Z, Zhou J, Zhao G, Yang J, et al. MicroRNA-149 inhibits proliferation and cell cycle progression through the targeting of ZBTB2 in human gastric cancer. PLoS One. 2012;7:e41693.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Liu X, Zhang Z, Sun L, Chai N, Tang S, Jin J, et al. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis. 2011;32:1798–805.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28:1721–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Woolf B. On estimating the relation between blood group and disease. Ann Hum Genet. 1955;19:251–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Niu W, Qi Y, Gao P, Zhu D. Association of TGFB1–509 C>T polymorphism with breast cancer: evidence from a meta-analysis involving 23,579 subjects. Breast Cancer Res Treat. 2010;124:243–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Lou Y, Li R, Zhang Y, Zhong R, Pei J, Xiong L, et al. XPA gene rs1800975 single nucleotide polymorphism and lung cancer risk: a meta-analysis. Tumour Biol. 2014;35:6607–17.Google Scholar
  22. 22.
    Guedj M, Nuel G, Prum B. A note on allelic tests in case-control association studies. Ann Hum Genet. 2008;72:407–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med. 1997;127:820–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Petitti D. Meta-analysis, decision analysis, and cost-effectiveness analysis. New York: Oxford University Press; 1994. p. 15–20.Google Scholar
  25. 25.
    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Wu Z, Lou Y, Jin W, Liu Y, Lu L, Chen Q, et al. The Connexin37 gene C1019T polymorphism and risk of coronary artery disease: a meta-analysis. Arch Med Res. 2014;45:21–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang MY, Chen FY, Zhong H. Meta-analysis of human leukocyte antigen genetic polymorphisms and susceptibility to chronic myelogenous leukemia in Chinese population. Leuk Res. 2011;35:1564–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev. 2009;18:1183–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Kim MJ, Yoo SS, Choi YY, Park JY. A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population. Lung Cancer. 2010;69:127–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hong YS, Kang HJ, Kwak JY, Park BL, You CH, Kim YM, et al. Association between microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population. J Prev Med Public Health. 2011;44:125–30.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Zhang MW, Yu YX, Jin MJ, Pan YF, Jiang X, Li QL, et al. Association of miR-605 and miR-149 genetic polymorphisms with related risk factors of lung cancer susceptibility. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2011;40:265–71 (in Chinese).PubMedGoogle Scholar
  32. 32.
    Vinci S, Gelmini S, Pratesi N, Conti S, Malentacchi F, Simi L, et al. Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. Clin Chem Lab Med. 2011;49:2073–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Jeon HS, Lee YH, Lee SY, Jang JA, Choi YY, Yoo SS, et al. A common polymorphism in pre-microRNA-146a is associated with lung cancer risk in a Korean population. Gene. 2014;534:66–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Parlayan C, Ikeda S, Sato N, Sawabe M, Muramatsu M, Arai T. Association analysis of single nucleotide polymorphisms in miR-146a and miR-196a2 on the prevalence of cancer in elderly Japanese: a case-control study. Asian Pac J Cancer Prev. 2014;15:2101–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Ling XX, Li YY, Yang L, Ji WD, Bin XN, LV JC. Genetic variant in seed region of has-miR-499-3p (rs3746444A>G) increases risk of lung cancer. Chin J Public Health. 2011; 27: 1105–7 (in Chinese).Google Scholar
  36. 36.
    Wang G, Wang W, Gao W, Lv J, Fang J. Two functional polymorphisms in microRNAs and lung cancer risk: a meta-analysis. Tumour Biol. 2014;35:2693–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Calvo R, West J, Franklin W, Erickson P, Bemis L, Li E, et al. Altered HOX and WNT7A expression in human lung cancer. Proc Natl Acad Sci U S A. 2000;97:12776–81.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Miller GJ, Miller HL, van Bokhoven A, Lambert JR, Werahera PN, Schirripa O, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res. 2003;63:5879–88.PubMedGoogle Scholar
  39. 39.
    Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, et al. The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res. 2005;11:6442–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis. 2008;29:1963–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Hung PS, Chang KW, Kao SY, Chu TH, Liu CJ, Lin SC. Association between the rs2910164 polymorphism in pre-mir-146a and oral carcinoma progression. Oral Oncol. 2012;48:404–8.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Pulmonary, Shanghai Chest HospitalShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Cardiology, Ruijin Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations