Skip to main content

Advertisement

Log in

Diagnostic tests based on gene expression profile in breast cancer: from background to clinical use

  • Review
  • Published:
Tumor Biology

Abstract

Breast cancer is a complex disease with heterogeneous presentation and clinical course. The last decade has witnessed the development, commercialization, and increasing use of multigene assays, designed to support physicians and patients in clinical decision making in early-stage breast cancer. These include Oncotype DX®, MammaPrint®, and Prosigna™ assays. The assays differ in the technological platforms used for assessment of gene expression, in the number of genes and in the specific genes that are being tested, in the patient populations used for their development and validation, and in their clinical utility. This review focuses on these three commercialized assays, their development, validation, and clinical utility. The review also addresses ongoing prospective trials investigating these assays and health-economic considerations relating to their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Early Breast Cancer Trialists’ Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Article  Google Scholar 

  3. Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10:955–60.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bastien RR, Rodriguez-Lescure A, Ebbert MT, Prat A, Munarriz B, Rowe L, et al. Pam50 breast cancer subtyping by RT-qPCR and concordance with standard clinical molecular markers. BMC Med Genet. 2012;5:44.

    CAS  Google Scholar 

  5. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22:1736–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. NCCN-breast_2.2014. NCCN clinical practice guidelines in oncology. Breast cancer. Version 2.2014. 2014.

  7. Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A, et al. How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss working group of breast- and gynecopathologists. PLoS One. 2012;7:e37379.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. International Ki67 in Breast Cancer Working Group of the Breast International G, North American Breast Cancer G: an international ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Viale G, Regan MM, Mastropasqua MG, Maffini F, Maiorano E, Colleoni M, et al. Predictive value of tumor ki-67 expression in two randomized trials of adjuvant chemoendocrine therapy for node-negative breast cancer. J Natl Cancer Inst. 2008;100:207–12.

    Article  CAS  PubMed  Google Scholar 

  10. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  11. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  CAS  PubMed  Google Scholar 

  12. Habel LA, Shak S, Jacobs MK, Capra A, Alexander C, Pho M, et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 2006;8:R25.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Goldstein LJ, Gray R, Badve S, Childs BH, Yoshizawa C, Rowley S, et al. Prognostic utility of the 21-gene assay in hormone receptor-positive operable breast cancer compared with classical clinicopathologic features. J Clin Oncol. 2008;26:4063–71.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Albain KS, Barlow WE, Shak S, Hortobagyi GN, Livingston RB, Yeh IT, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dowsett M, Cuzick J, Wale C, Forbes J, Mallon EA, Salter J, et al. Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a transatac study. J Clin Oncol. 2010;28:1829–34.

    Article  PubMed  Google Scholar 

  16. Toi M, Iwata H, Yamanaka T, Masuda N, Ohno S, Nakamura S, et al. Clinical significance of the 21-gene signature (oncotype dx) in hormone receptor-positive early stage primary breast cancer in the Japanese population. Cancer. 2010;116:3112–8.

    Article  CAS  PubMed  Google Scholar 

  17. Mamounas EP, Tang G, Paik S, Baehner FL, Liu Q, Jeong J-H, et al. Association between the 21-gene recurrence score (rs) and benefit from adjuvant paclitaxel (pac) in node-positive (n+), er-positive breast cancer patients (pts): Results from nsabp b-28: San Antonio Breast Cancer Symposium (SABCS). San Antonio, TX, 2012.

  18. ClinicalTrials.gov. Clinicaltrials.Gov website. Description of the tailorx trial., 2013.

  19. ClinicalTrials.gov. Clinicaltrials.Gov website. Description of the rxponder trial., 2013.

  20. Yardley DA, Peacock NA, Hendricks C, Huh SY, Ketchum S, Chao C, et al. Correlation of oncotype dx recurrence scores with pathologic response following neoadjuvant ixabepilone and cyclophosphamide in patients with her2–negative breast cancer: a Sarah Cannon Research Institute phase ii trial. Cancer Res. 2011;71(24 Suppl):Abstract nr P5-13-09.

  21. Chang JC, Makris A, Gutierrez MC, Hilsenbeck SG, Hackett JR, Jeong J, et al. Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat. 2008;108:233–40.

    Article  CAS  PubMed  Google Scholar 

  22. Gianni L, Zambetti M, Clark K, Baker J, Cronin M, Wu J, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol. 2005;23:7265–77.

    Article  CAS  PubMed  Google Scholar 

  23. Carlson JJ, Roth JA. The impact of the Oncotype DX breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat. 2013;141:13–22.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Albanell J, Gonzalez A, Ruiz-Borrego M, Alba E, Garcia-Saenz JA, Corominas JM, et al. Prospective transGEICAM study of the impact of the 21-gene recurrence score assay and traditional clinicopathological factors on adjuvant clinical decision making in women with estrogen receptor-positive (er+) node-negative breast cancer. Ann Oncol. 2012;23:625–31.

    Article  CAS  PubMed  Google Scholar 

  25. Davidson JA, Cromwell I, Ellard SL, Lohrisch C, Gelmon KA, Shenkier T, et al. A prospective clinical utility and pharmacoeconomic study of the impact of the 21-gene recurrence score(r) assay in oestrogen receptor positive node negative breast cancer. Eur J Cancer. 2013.

  26. Lo SS, Mumby PB, Norton J, Rychlik K, Smerage J, Kash J, et al. Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol. 2010;28:1671–6.

    Article  PubMed  Google Scholar 

  27. Asad J, Jacobson AF, Estabrook A, Smith SR, Boolbol SK, Feldman SM, et al. Does oncotype DX recurrence score affect the management of patients with early-stage breast cancer? Am J Surg. 2008;196:527–9.

    Article  PubMed  Google Scholar 

  28. Klang SH, Hammerman A, Liebermann N, Efrat N, Doberne J, Hornberger J. Economic implications of 21-gene breast cancer risk assay from the perspective of an Israeli-managed health-care organization. Value Health. 2010;13:381–7.

    Article  PubMed  Google Scholar 

  29. Oratz R, Paul D, Cohn AL, Sedlacek SM. Impact of a commercial reference laboratory test recurrence score on decision making in early-stage breast cancer. J Oncol Pract. 2007;3:182–6.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gligorov J, Pivot XB, Naman HL, Jacot W, Spaeth D, MJ L, et al. Prospective study of the impact of using the 21-gene recurrence score assay on clinical decision making in women with estrogen receptor positive, her2-negative, early-stage breast cancer in France.: American Society of Clinical Oncology (ASCO) Annual Meeting Chicago, IL, 2012, pp Poster 568.

  31. Holt S, Bertelli G, Humphreys I, Valentine W, Durrani S, Pudney D, et al. A decision impact, decision conflict and economic assessment of routine oncotype dx testing of 146 women with node-negative or pNImi, ER-positive breast cancer in the UK. Br J Cancer. 2013;108:2250–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eiermann W, Rezai M, Kummel S, Kuhn T, Warm M, Friedrichs K, et al. The 21-gene recurrence score assay impacts adjuvant therapy recommendations for ER-positive, node-negative and node-positive early breast cancer resulting in a risk-adapted change in chemotherapy use. Ann Oncol. 2013;24:618–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bargallo JER, Lara F, Shaw Dulin RJ, Perez-Sánchez V, Villarreal-Garza C, Maldonado-Martinez H, et al. A study of the impact of the 21-gene breast cancer assay on the use of adjuvant chemotherapy in women with breast cancer in a Mexican public hospital: European Society for Medical Oncology 2012 Congress. Vienna, Austria 2012.

  34. de Boer RH, Baker C, Speakman D, Chao CY, Yoshizawa C, Mann GB. The impact of a genomic assay (oncotype dx) on adjuvant treatment recommendations in early breast cancer. Med J Aust. 2013;199:205–8.

    Article  PubMed  Google Scholar 

  35. Yamauchi H, Nakagawa C, Takei H, Chao C, Yoshizawa C, Yagata H, et al. Prospective study of the effect of the 21-gene assay on adjuvant clinical decision-making in Japanese women with estrogen receptor-positive, node-negative, and node-positive breast cancer. Clin Breast Cancer. 2013.

  36. Oratz R, Kim B, Chao C, Skrzypczak S, Ory C, Bugarini R, et al. Physician survey of the effect of the 21-gene recurrence score assay results on treatment recommendations for patients with lymph node-positive, estrogen receptor-positive breast cancer. J Oncol Pract. 2011;7:94–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Geffen DB, Abu-Ghanem S, Sion-Vardy N, Braunstein R, Tokar M, Ariad S, et al. The impact of the 21-gene recurrence score assay on decision making about adjuvant chemotherapy in early-stage estrogen-receptor-positive breast cancer in an oncology practice with a unified treatment policy. Ann Oncol. 2011;22:2381–6.

    Article  CAS  PubMed  Google Scholar 

  38. Stemmer SM, Klang SH, Ben-Baruch N, Geffen DB, Steiner M, Soussan-Gutman L, et al. The impact of the 21-gene recurrence score assay on clinical decision-making in node-positive (up to 3 positive nodes) estrogen receptor-positive breast cancer patients. Breast Cancer Res Treat. 2013;140:83–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kuchel A, Robinson T, Comins C, Shere M, Varughese M, Sparrow G, et al. A prospective multi-centre study of the impact of oncotype dx® on adjuvant treatment decisions in patients in the UK with oestrogen receptor positive early breast cancer: European Society for Medical Oncology 2013 Congress. Amsterdam, The Netherlands, 2013.

  40. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol. 2005;23:7332–41.

    Article  CAS  PubMed  Google Scholar 

  41. Senkus E, Kyriakides S, Penault-Llorca F, Poortmans P, Thompson A, Zackrisson S, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2013;24 Suppl 6:vi7–23.

    Article  PubMed  Google Scholar 

  42. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Ann Oncol. 2013;24:2206–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of clinical oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  44. (AGO) TGWGoGO. Diagnosis and treatment of patients with primary and metastatic breast cancer: prognostic and predictive factors. http://www.ago-online.de/fileadmin/downloads/leitlinien/mamma/maerz2014/en/2014ER_05_Prognostic_and_Predictive_Factors.pdf 2014.

  45. NICE. Diagnostic guidance document: gene expression profiling and expanded immunohistochemistry tests for guiding adjuvant chemotherapy decisions in early breast cancer management: Mammaprint, oncotype dx, ihc4 and mammostrat, 2013.

  46. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  47. MammaPrint_FDA_Approval. Mammaprint fda approval. 510(k) substantial equivalence determination decision summary., 2007.

  48. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  49. Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M, Glas AM, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–92.

    Article  CAS  PubMed  Google Scholar 

  50. Bueno-de-Mesquita JM, Linn SC, Keijzer R, Wesseling J, Nuyten DS, van Krimpen C, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat. 2009;117:483–95.

    Article  CAS  PubMed  Google Scholar 

  51. Bueno-de-Mesquita JM, van Harten WH, Retel VP, van’t Veer LJ, van Dam FS, Karsenberg K, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol. 2007;8:1079–87.

    Article  CAS  PubMed  Google Scholar 

  52. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116:295–302.

    Article  CAS  PubMed  Google Scholar 

  53. Mook S, Schmidt MK, Weigelt B, Kreike B, Eekhout I, van de Vijver MJ, et al. The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age. Ann Oncol. 2010;21:717–22.

    Article  CAS  PubMed  Google Scholar 

  54. Sapino A, Roepman P, Linn SC, Snel MH, Delahaye LJ, van den Akker J, et al. Mammaprint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn 2013.

  55. Mook S, Knauer M, Bueno-de-Mesquita JM, Retel VP, Wesseling J, Linn SC, et al. Metastatic potential of t1 breast cancer can be predicted by the 70-gene mammaprint signature. Ann Surg Oncol. 2010;17:1406–13.

    Article  PubMed  Google Scholar 

  56. Drukker CA, Bueno-de-Mesquita JM, Retel VP, van Harten WH, van Tinteren H, Wesseling J, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer J Int Cancer. 2013;133:929–36.

    Article  CAS  Google Scholar 

  57. Knauer M, Mook S, Rutgers EJ, Bender RA, Hauptmann M, van de Vijver MJ, et al. The predictive value of the 70-gene signature for adjuvant chemotherapy in early breast cancer. Breast Cancer Res Treat. 2010;120:655–61.

    Article  CAS  PubMed  Google Scholar 

  58. ClinicalTrials.gov. Clinicaltrials.Gov website. Description of the mindact trial., 2013.

  59. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, et al. The EORTC 10041/big 03–04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer. 2011;47:2742–9.

    Article  PubMed  Google Scholar 

  60. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27:1160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Prosigna. Prosigna [package insert]. Seattle, WA; nanostring technologies, Inc.; 2013.

  62. Gnant M, Filipits M, Greil R, Stoeger H, Rudas M, Bago-Horvath Z, et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: using the pam50 risk of recurrence score in 1478 postmenopausal patients of the abcsg-8 trial treated with adjuvant endocrine therapy alone. Ann Oncol. 2013.

  63. Gnant M, Dowsett M, Filipits M, Lopez-Knowles E, Greil R, Balic M, et al. Identifying clinically relevant prognostic subgroups in node-positive postmenopausal hr+ early breast cancer patients treated with endocrine therapy: a combined analysis of 2,485 patients from abcsg-8 and atac using the pam50 risk of recurrence (ror) score and intrinsic subtype. J Clin Oncol. 2013;31.

  64. Filipits M, Nielsen TO, Rudas M, Greil R, Stoger H, Jakesz R, et al. The pam50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin Cancer Res. 2014;20:1298–305.

    Article  CAS  PubMed  Google Scholar 

  65. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of pam50 risk of recurrence score with oncotype dx and ihc4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    Article  PubMed  Google Scholar 

  66. Kelly CM, Bernard PS, Krishnamurthy S, Wang B, Ebbert MT, Bastien RR, et al. Agreement in risk prediction between the 21-gene recurrence score assay (oncotype dx(r)) and the pam50 breast cancer intrinsic classifier in early-stage estrogen receptor-positive breast cancer. Oncologist. 2012;17:492–8.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Dabbs DJ, Klein ME, Mohsin SK, Tubbs RR, Shuai Y, Bhargava R. High false-negative rate of her2 quantitative reverse transcription polymerase chain reaction of the oncotype dx test: an independent quality assurance study. J Clin Oncol. 2011;29:4279–85.

    Article  PubMed  Google Scholar 

  68. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Early Breast Cancer Trialists’ Collaborative G, Peto R, Davies C, Godwin J, Gray R, Pan HC, et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet. 2012;379:432–44.

    Article  Google Scholar 

  70. Lacey L, Chien R, Hornberger J. Cost-utility of the 21-gene breast cancer assay (Oncotype DX®) in the Irish healthcare setting.: San Antonio Breast Cancer Symposium (SABCS). San Antonio, TX, 2011, pp P1-10-04.

  71. Tsoi DT, Inoue M, Kelly CM, Verma S, Pritchard KI. Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist. 2010;15:457–65.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Paulden M, Franek J, Pham B, Krahn M. Gene expression profiling for guiding adjuvant chemotherapy decisions in women with early breast cancer: a cost-effectiveness analysis of 1000 strategies for the provision of adjuvant! Online, oncotype dx and chemotherapy.: International Society For Pharmacoeconomics and Outcomes Research (ISPOR) 16th Annual international Meeting. Baltimore, MD, 2011.

  73. Kondo M, Hoshi SL, Yamanaka T, Ishiguro H, Toi M. Economic evaluation of the 21-gene signature (oncotype dx) in lymph node-negative/positive, hormone receptor-positive early-stage breast cancer based on Japanese validation study (jbcrg-tr03). Breast Cancer Res Treat. 2011;127:739–49.

    Article  PubMed  Google Scholar 

  74. Lamond NW, Skedgel C, Rayson D, Lethbridge L, Younis T. Cost-utility of the 21-gene recurrence score assay in node-negative and node-positive breast cancer. Breast Cancer Res Treat 2012.

  75. Madaras B, Rózsa P, Gerencsér Z, Radovics T, Láng I, Nagy Z, et al. Evaluation of the cost-effectiveness of Oncotype-DX® multigene assay in Hungary: 12th St Gallen International Breast Cancer Conference. St Gallen, Switzerland, 2011.

  76. O’Leary B, Yoshizawa C, Foteff C, Chao C. Cost-effectiveness of the Oncotype DX assay in Australia: an exploratory analysis.: International Society For Pharmacoeconomics and Outcomes Research (ISPOR) 4th Asia-Pacific Conference. Phuket, Thailand, 2010.

  77. de Lima Lopez G, Chien R, Hornberger J. Cost–benefit analysis of the 21-gene recurrence score® for early stage breast cancer in Singapore.: 12th St Gallen International Breast Cancer Conference St Gallen, Switzerland, 2011.

  78. Blohmer JU, Rezai M, Kummel S, Kuhn T, Warm M, Friedrichs K, et al. Using the 21-gene assay to guide adjuvant chemotherapy decision-making in early-stage breast cancer: a cost-effectiveness evaluation in the German setting. J Med Econ. 2013;16:30–40.

    Article  CAS  PubMed  Google Scholar 

  79. Hornberger J, Cosler LE, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene rt-pcr assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer. Am J Manag Care. 2005;11:313–24.

    PubMed  Google Scholar 

  80. Lyman GH, Cosler LE, Kuderer NM, Hornberger J. Impact of a 21-gene rt-pcr assay on treatment decisions in early-stage breast cancer: an economic analysis based on prognostic and predictive validation studies. Cancer. 2007;109:1011–8.

    Article  PubMed  Google Scholar 

  81. Vataire AL, Laas E, Aballea S, Gligorov J, Rouzier R, Chereau E. Cost-effectiveness of a chemotherapy predictive test. Bull Cancer. 2012;99:907–14.

    PubMed  Google Scholar 

  82. Chen E, Tong KB, Malin JL. Cost-effectiveness of 70-gene mammaprint signature in node-negative breast cancer. Am J Manag Care. 2010;16:e333–42.

    PubMed  Google Scholar 

  83. Retel VP, Joore MA, van Harten WH. Head-to-head comparison of the 70-gene signature versus the 21-gene assay: cost-effectiveness and the effect of compliance. Breast Cancer Res Treat. 2012;131:627–36.

    Article  PubMed  Google Scholar 

  84. Yang M, Rajan S, Issa AM. Cost effectiveness of gene expression profiling for early stage breast cancer: a decision-analytic model. Cancer. 2012;118:5163–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grant supporting PhD student was funded by Associazione Ricerca in Campo Oncologico Onlus, Cremona, Italy.

Financial disclosures

Medical writing assistance was provided by Genomic Health, Inc.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Generali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanotti, L., Bottini, A., Rossi, C. et al. Diagnostic tests based on gene expression profile in breast cancer: from background to clinical use. Tumor Biol. 35, 8461–8470 (2014). https://doi.org/10.1007/s13277-014-2366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2366-2

Keywords

Navigation