Tumor Biology

, Volume 35, Issue 10, pp 10467–10478 | Cite as

Identification of circulating microRNAs as biomarkers in diagnosis of hematologic cancers: a meta-analysis

Research Article

Abstract

Recent studies have provided new insights into the diagnostic value of circulating microRNAs (miRNAs) for hematologic cancers. However, inconsistent results have been reported on the diagnostic performance of various kinds of miRNAs. To systematically assess the potential diagnostic value of miRNAs in hematologic cancers, we conducted the present meta-analysis. Multiple databases (PubMed, Cochrane Library, EMBASE, CNKI, and Wan Fang) were carefully searched for available studies up to April 4, 2014. Sensitivity and specificity were pooled using a random-effects model. Likelihood ratio (LR), diagnostic odds ratio (DOR), and the area under the curve (AUC) were used to measure the diagnostic values. Subgroup and meta-regression analyses were used to find potential sources of heterogeneity. Thirty-four studies from 14 publications, which involved 1,159 hematologic cancer patients and 826 healthy controls, were included in this meta-analysis. The pooled estimates indicated a moderately high diagnostic accuracy for circulating miRNAs, with a sensitivity of 0.83, a specificity of 0.85, a PLR of 5.7, a NLR of 0.20, a DOR of 29, and an AUC of 0.91. The subgroup analyses showed that diagnostic accuracy was better for acute myeloid leukemia (AML) patients and Asians compared with other subgroups. In addition, multiple miRNA assays displayed a better performance than single ones. Furthermore, we found that plasma might be a more promising matrix for detecting the expression of miRNAs than serum. Our results identified the potential use of circulating miRNAs in second-line diagnosis for hematologic cancers, especially the value of miRNA panels. However, further large cohort studies are still required to confirm our findings.

Keywords

Circulating microRNAs Hematologic cancers Meta-analysis Diagnostic value 

Notes

Conflict of interest

None

References

  1. 1.
    Estey E, Dohner H. Acute myeloid leukaemia. Lancet. 2006;368:1894–907. doi: 10.1016/S0140-6736(06)69780-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Ann Oncol. 2007;18 Suppl 1:i3–8. doi: 10.1093/annonc/mdl443.CrossRefPubMedGoogle Scholar
  3. 3.
    Stone RM, O’Donnell MR, Sekeres MA. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2004:98–117. doi: 10.1182/asheducation-2004.1.98.
  4. 4.
    Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol. 2009;2:23. doi: 10.1186/1756-8722-2-23.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi: 10.3322/caac.20107.CrossRefPubMedGoogle Scholar
  6. 6.
    Becker N. Epidemiology of multiple myeloma. Recent Results Cancer Res. 2011;183:25–35. doi: 10.1007/978-3-540-85772-3_2.CrossRefPubMedGoogle Scholar
  7. 7.
    Orfao A, Lopez A, Flores J, Almeida J. Diagnosis of hematological malignancies: new applications for flow cytometry. Hematol (EHA Educ Program). 2006;2:6–13.Google Scholar
  8. 8.
    Belov L, Huang P, Barber N, Mulligan SP, Christopherson RI. Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics. 2003;3:2147–54. doi: 10.1002/pmic.200300599.CrossRefPubMedGoogle Scholar
  9. 9.
    Ruiz-Arguelles A, Rivadeneyra-Espinoza L, Duque RE, Orfao A. Report on the second Latin American consensus conference for flow cytometric immunophenotyping of hematological malignancies. Cytometry B Clin Cytom. 2006;70:39–44. doi: 10.1002/cyto.b.20083.CrossRefPubMedGoogle Scholar
  10. 10.
    Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer. 2001;1:118–29. doi: 10.1038/35101072.CrossRefPubMedGoogle Scholar
  11. 11.
    Schroers R, Baraniskin A, Heute C, Kuhnhenn J, Alekseyev A, Schmiegel W, et al. Detection of free immunoglobulin light chains in cerebrospinal fluids of patients with central nervous system lymphomas. Eur J Haematol. 2010;85:236–42. doi: 10.1111/j.1600-0609.2010.01475.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Sevcikova S, Kubiczkova L, Sedlarikova L, Slaby O, Hajek R. Serum miR-29a as a marker of multiple myeloma. Leuk Lymphoma. 2013;54:189–91. doi: 10.3109/10428194.2012.704030.CrossRefPubMedGoogle Scholar
  13. 13.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69. doi: 10.1038/nrc1840.CrossRefPubMedGoogle Scholar
  14. 14.
    Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3:e3694. doi: 10.1371/journal.pone.0003694.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Lin S, Pan L, Guo S, Wu J, Jin L, Wang JC, et al. Prognostic role of microRNA-181a/b in hematological malignancies: a meta-analysis. PLoS One. 2013;8:e59532. doi: 10.1371/journal.pone.0059532.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Baraniskin A, Kuhnhenn J, Schlegel U, Chan A, Deckert M, Gold R, et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood. 2011;117:3140–6. doi: 10.1182/blood-2010-09-308684.CrossRefPubMedGoogle Scholar
  17. 17.
    Fang C, Zhu DX, Dong HJ, Zhou ZJ, Wang YH, Liu L, et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol. 2012;91:553–9. doi: 10.1007/s00277-011-1350-9.CrossRefPubMedGoogle Scholar
  18. 18.
    Guo HQ, Huang GL, Guo CC, Pu XX, Lin TY. Diagnostic and prognostic value of circulating miR-221 for extranodal natural killer/T-cell lymphoma. Dis Markers. 2010;29:251–8. doi: 10.3233/dma-2010-0755.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Ohyashiki K, Umezu T, Yoshizawa S, Ito Y, Ohyashiki M, Kawashima H, et al. Clinical impact of down-regulated plasma miR-92a levels in non-Hodgkin’s lymphoma. PLoS One. 2011;6:e16408. doi: 10.1371/journal.pone.0016408.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hao M, Zang M, Qin Y, Yang W, Feng X, Xu Y, et al. Circulating MIR-19A and MIR-92A in serum as potential biomarkers for detecting multiple myeloma. Clin Lymphoma Myeloma and Leuk. 2013;13:S198–9.CrossRefGoogle Scholar
  21. 21.
    Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99:511–8. doi: 10.3324/haematol.2013.093500.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Zhi F, Cao X, Xie X, Wang B, Dong W, Gu W, et al. Identification of circulating microRNAs as potential biomarkers for detecting acute myeloid leukemia. PLoS One. 2013;8:e56718. doi: 10.1371/journal.pone.0056718.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8. doi: 10.1073/pnas.0804549105.PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. Expert Rev Mol Diagn. 2010;10:297–308. doi: 10.1586/erm.10.11.CrossRefPubMedGoogle Scholar
  25. 25.
    Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–92. doi: 10.1111/j.1349-7006.2010.01650.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Xie HT, Chu ZX, Wang H. Serum microRNA expression profile as a biomarker in diagnosis and prognosis of acute myeloid leukemia. J Clin Pediatr. 2012;30:421–4.Google Scholar
  27. 27.
    Yoshizawa S, Ohyashiki JH, Ohyashiki M, Umezu T, Suzuki K, Inagaki A, et al. Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J. 2012;2:e53. doi: 10.1038/bcj.2011.51.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. doi: 10.7326/0003-4819-155-8-201110180-00009.CrossRefPubMedGoogle Scholar
  29. 29.
    Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31. doi: 10.1186/1471-2288-6-31.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R, et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med. 2013;11:31. doi: 10.1186/1479-5876-11-31.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY, et al. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2012;39:2713–22. doi: 10.1007/s11033-011-1026-5.CrossRefPubMedGoogle Scholar
  32. 32.
    Mao X, Sun Y, Tang J. Serum miR-21 is a diagnostic and prognostic marker of primary central nervous system lymphoma. Neurol Sci. 2014;35:233–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Hao M, Zang M, Yu Q, Fei L, Yang W, Feng X et al. Serum miR-4254, miR-19a and miR-33b are potential markers for diagnosis and prognostic evaluation in multiple myeloma. Blood. 2013;122.Google Scholar
  34. 34.
    Qu X, Zhao M, Wu S, Yu W, Xu J, Xu J et al. Circulating microrna 483-5p in multiple myeloma as a novel biomarker for diagnosis and predicting survival. Blood. 2013;122.Google Scholar
  35. 35.
    Frankfurt O, Licht JD, Tallman MS. Molecular characterization of acute myeloid leukemia and its impact on treatment. Curr Opin Oncol. 2007;19:635–49. doi: 10.1097/CCO.0b013e3282f10e55.CrossRefPubMedGoogle Scholar
  36. 36.
    Haferlach T, Bacher U, Haferlach C, Kern W, Schnittger S. Insight into the molecular pathogenesis of myeloid malignancies. Curr Opin Hematol. 2007;14:90–7. doi: 10.1097/MOH.0b013e3280168490.CrossRefPubMedGoogle Scholar
  37. 37.
    Jabbour EJ, Estey E, Kantarjian HM. Adult acute myeloid leukemia. Mayo Clin Proc. 2006;81:247–60. doi: 10.4065/81.2.247.CrossRefPubMedGoogle Scholar
  38. 38.
    Pfreundschuh M. How I treat elderly patients with diffuse large B-cell lymphoma. Blood. 2010;116:5103–10. doi: 10.1182/blood-2010-07-259333.CrossRefPubMedGoogle Scholar
  39. 39.
    Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.CrossRefPubMedGoogle Scholar
  40. 40.
    Wittmann J, Jack HM. Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta Rev Cancer. 1806;2010:200–7.Google Scholar
  41. 41.
    Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol. 2010;28:1721–6. doi: 10.1200/JCO.2009.24.9342.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One. 2010;5:e13735. doi: 10.1371/journal.pone.0013735.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57:833–40. doi: 10.1373/clinchem.2010.157198.CrossRefPubMedGoogle Scholar
  44. 44.
    Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115:3842–7. doi: 10.1002/cncr.24440.CrossRefPubMedGoogle Scholar
  45. 45.
    Redova M, Poprach A, Nekvindova J, Iliev R, Radova L, Lakomy R, et al. Circulating miR-378 and miR-451 in serum are potential biomarkers for renal cell carcinoma. J Transl Med. 2012;10:55. doi: 10.1186/1479-5876-10-55.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5. doi: 10.1111/j.1365-2141.2008.07077.x.CrossRefPubMedGoogle Scholar
  47. 47.
    Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26. doi: 10.1002/ijc.25007.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  1. 1.Department of Oncology, Xiangyang Central HospitalThe Affiliated Hospital of Hubei College of Arts and SciencesXiangyangChina
  2. 2.Department of HematologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  3. 3.Department of HematologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations