Tumor Biology

, Volume 35, Issue 10, pp 10571–10579 | Cite as

A novel FGF2 antagonist peptide P8 with potent antiproliferation activity

  • Lei Fan
  • Hang Xie
  • Lingzi Chen
  • Hui Ye
  • Shilong Ying
  • Cong Wang
  • Xiaoping Wu
  • Wulan Li
  • Jianzhang Wu
  • Guang Liang
  • Xiaokun Li
Research Article

Abstract

Some fibroblast growth factors (FGFs) play a critical role in tumorigenesis and progression. Among them, FGF2 was highly expressed in some tumors, and antagonists binding to FGF2 can suppress the growth of tumor cells. Therefore, FGF2 has been considered as an important target in cancer therapy. In this study, we identified a novel FGF2-binding short peptide (P8, PLLQATAGGGS-NH2) using phage display technology and alanine scanning. The P8 peptide suppressed FGF2-induced proliferation with no cytotoxic effect on cells, arrested the cycle at the G0/G1 phase in B16-F10 cells, and downregulated the activation of fibroblast growth factor receptor substrate 2α (FRS2α)/ERK cascade in B16-F10, NIH-H460, and SGC-7901 cells. Besides, P8 peptide can also inhibit the phosphorylation of FRS2α stimulated by FGF1 and KGF2. These implied that P8 peptide may develop as a multi-target antagonist peptide contributing to tumor treatment.

Keywords

FGF2-binding peptide Cell proliferation Cell cycle Signaling pathway Multi-targets 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81102310, 81272462, 81101712), the Natural Science Foundation of Zhejiang Province of China (Y4110029), Technology Foundation for Medical Science of Zhejiang Province (2012KYA127), the Fundamental Research Funds for the Central Universities (X. Wu), Guangdong Provincial “Thousand-Hundred-Ten Talent Project” (X. Wu), Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Jinan University, and National Undergraduate Training Programs for Innovation and Entrepreneurship (201310343001).

Conflicts of interest

None

References

  1. 1.
    Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer. 2000;7:165–97.CrossRefPubMedGoogle Scholar
  2. 2.
    Goldfarb M. Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev. 2005;16:215–20.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9:28–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Shi HL, Yang T, Deffar K, Dong CG, Liu JY, Fu CL, et al. A novel single-chain variable fragment antibody against FGF-1 inhibits the growth of breast carcinoma cells by blocking the intracrine pathway of FGF-1. IUBMB Life. 2011;63:129–37.PubMedGoogle Scholar
  6. 6.
    Wang C, Yu Y, Li Q, Gao S, Jia X, Chen X, et al. P7 peptides suppress the proliferation of K562 cells induced by basic fibroblast growth factor. Tumour Biol. 2012;33:1085–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Memarzadeh S, Xin L, Mulholland DJ, Mansukhani A, Wu H, Teitell MA, et al. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell. 2007;12:572–85.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Chung SS, Koh CJ. Bladder cancer cell in co-culture induces human stem cell differentiation to urothelial cells through paracrine FGF10 signaling. In Vitro Cell Dev Biol Anim. 2013;49:746–51.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Facchiano A, Russo K, Facchiano AM, De Marchis F, Facchiano F, Ribatti D, et al. Identification of a novel domain of fibroblast growth factor 2 controlling its angiogenic properties. J Biol Chem. 2003;278:8751–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Rusnati M, Presta M. Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des. 2007;13:2025–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Acevedo VD, Ittmann M, Spencer DM. Paths of FGFR-driven tumorigenesis. Cell Cycle. 2009;8:580–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Cochran S, Li C, Fairweather JK, Kett WC, Coombe DR, Ferro V. Probing the interactions of phosphosulfomannans with angiogenic growth factors by surface plasmon resonance. J Med Chem. 2003;46:4601–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Takano S, Gately S, Neville ME, Herblin WF, Gross JL, Engelhard H, et al. Suramin, an anticancer and angiosuppressive agent, inhibits endothelial cell binding of basic fibroblast growth factor, migration, proliferation, and induction of urokinase-type plasminogen activator. Cancer Res. 1994;54:2654–60.PubMedGoogle Scholar
  14. 14.
    Danesi R, Del B, Soldani P, Campagni A, La Rocca R, Myers C, et al. Suramin inhibits bFGF-induced endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane. Br J Cancer. 1993;68:932–8.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Sola F, Moneta D, Ubezio P, Grandi M. The antitumor efficacy of cytotoxic drugs is potentiated by treatment with PNU 145156E, a growth-factor-complexing molecule. Cancer Chemother Pharmacol. 1999;43:241–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Wu J, Liang G, Wu X, Yang S, Li X. Progress of inhibitors targeting fibroblast growth factor. Chem Online. 2010;73:140–6.Google Scholar
  17. 17.
    Manetti F, Corelli F, Botta M. Fibroblast growth factors and their inhibitors. Curr Pharm Des. 2000;6:1897–924.CrossRefPubMedGoogle Scholar
  18. 18.
    Fan H, Zhou H, Li W. The interaction of fibroblast growth factor/fibroblast growth factor receptor and FGF inhibitors. Prog Biochem Biophys. 2001;28:338–41.Google Scholar
  19. 19.
    Wu X, Yan Q, Huang Y, Huang H, Su Z, Xiao J, et al. Isolation of a novel basic FGF-binding peptide with potent antiangiogenetic activity. J Cell Mol Med. 2010;14:351–6.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Wang C, Lin S, Nie Y, Jia X, Wang J, Xiao J, et al. Mechanism of antitumor effect of a novel bFGF binding peptide on human colon cancer cells. Cancer Sci. 2010;101:1212–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Yu Y, Gao S, Li Q, Wang C, Lai X, Chen X, et al. The FGF2-binding peptide p7 inhibits melanoma growth in vitro and in vivo. J Cancer Res Clin Oncol. 2012;138:1321–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Victoria K, Simon J. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010;125:105–17.CrossRefGoogle Scholar
  23. 23.
    Wang R, Luo W, He D, Wu J, Zhu G, Tan X, et al. Inhibition of proliferation of non-small cell lung cancer cells by a FGF antagonist peptide. Int J Pept Res Ther. 2014;20:109–15.CrossRefGoogle Scholar
  24. 24.
    Wu X, Huang H, Wang C, Lin S, Huang Y, Wang Y, et al. Identification of a novel peptide that blocks basic fibroblast growth factor-mediated cell proliferation. Oncotarget. 2013;4:1819–28.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Smalley K. A pivotal role for erk in the oncogenic behaviour of malignant melanoma? Int J Cancer. 2003;104:527–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Nesbit M, Nesbit H, Bennett J, Andl T, Hsu M, Dejesus E, et al. Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene. 1999;18:6469–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Lazar-Molnar E, Hegyesi H, Toth S, Falus A. Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine. 2000;12:547–54.CrossRefPubMedGoogle Scholar
  28. 28.
    Lefèvre G, Babchia N, Calipel A, Mouriaux F. Activation of the FGF2/FGFR1 autocrine loop for cell proliferation and survival in uveal melanoma cells. Invest Ophthalmol Vis Sci. 2009;50:1047–57.CrossRefPubMedGoogle Scholar
  29. 29.
    Joseph T, Yuan K, You-Fang S. Cell cycle regulation of astrocytes by extracellular nucleotides and wbroblast growth factor-2. Purinergic Signal. 2005;1:329–36.CrossRefGoogle Scholar
  30. 30.
    Pagès G, L’Allemain G, Chambard J, Meloche S. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci U S A. 1993;90:8319–23.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Dai X, Cai C, Xiao F, Xiong Y, Huang Y, Zhang Q, et al. Identification of a novel afgf-binding peptide with anti-tumor effect on breast cancer from phage display library. Biochem Biophys Res Commun. 2014;445:795–801.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2014

Authors and Affiliations

  • Lei Fan
    • 1
  • Hang Xie
    • 1
  • Lingzi Chen
    • 1
  • Hui Ye
    • 1
    • 2
  • Shilong Ying
    • 1
  • Cong Wang
    • 1
  • Xiaoping Wu
    • 1
    • 3
  • Wulan Li
    • 1
    • 4
  • Jianzhang Wu
    • 1
  • Guang Liang
    • 1
  • Xiaokun Li
    • 1
  1. 1.Chemical Biology Research Center, College of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
  2. 2.School of Basic Medical SciencesWenzhou Medical UniversityWenzhouChina
  3. 3.Institute of Tissue Transplantation and ImmunologyJinan UniversityGuangzhouChina
  4. 4.College of Information Science and Computer EngineeringWenzhou Medical UniversityWenzhouChina

Personalised recommendations